English

Let L Denote the Set of All Straight Lines in a Plane. Let a Relation R Be Defined by Lrm If Lis Perpendicular to M for All L, M ∈ L. Then, R is ______________ . - Mathematics

Advertisements
Advertisements

Question

Mark the correct alternative in the following question:

Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m  L. Then, R is ______________ .

Options

  • reflexive

  • symmetric

  • transitive

  • none of these

MCQ

Solution

Hence, R is symmetric.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations - Exercise 1.4 [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 1 Relations
Exercise 1.4 | Q 31 | Page 33

RELATED QUESTIONS

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set  A  = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}


Three relations R1, R2 and R3 are defined on a set A = {a, b, c} as follows:
R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}
R2 = {(a, a)}
R3 = {(b, c)}
R4 = {(a, b), (b, c), (c, a)}.

Find whether or not each of the relations R1, R2, R3, R4 on A is (i) reflexive (ii) symmetric and (iii) transitive.


The following relation is defined on the set of real numbers.
aRb if a – b > 0

Find whether relation is reflexive, symmetric or transitive.


If = {1, 2, 3, 4} define relations on A which have properties of being reflexive, symmetric and transitive ?


Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.


Give an example of a relation which is reflexive and transitive but not symmetric ?


Give an example of a relation which is transitive but neither reflexive nor symmetric?


Let A = {abc} and the relation R be defined on A as follows: R = {(aa), (bc), (ab)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.


Let n be a fixed positive integer. Define a relation R on Z as follows:
(a, b) ∈ R ⇔ a − b is divisible by n.
Show that R is an equivalence relation on Z.


If R is a symmetric relation on a set A, then write a relation between R and R−1.


If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.


Let A = {3, 5, 7}, B = {2, 6, 10} and R be a relation from A to B defined by R = {(x, y) : x and y are relatively prime}. Then, write R and R−1.


Define a symmetric relation ?


Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs


Let A = {1, 2, 3}. Then, the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is ______.


If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .


S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .


In the set Z of all integers, which of the following relation R is not an equivalence relation ?


Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.


Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c   on the A x A  , where A =  {1, 2,3,...,10}  is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.


For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.


Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.


Give an example of a map which is one-one but not onto


Give an example of a map which is not one-one but onto


Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.


Let us define a relation R in R as aRb if a ≥ b. Then R is ______.


R = {(1, 1), (2, 2), (1, 2), (2, 1), (2, 3)} be a relation on A, then R is ____________.


If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.


Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.


If f(x) = `1 - 1/"x", "then f"("f"(1/"x"))` ____________.


Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.


Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.


Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.


Given set A = {a, b, c}. An identity relation in set A is ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Raji wants to know the number of relations possible from A to B. How many numbers of relations are possible?

The relation > (greater than) on the set of real numbers is


Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].


If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×