English

Three Relations R1, R2 And R3 Are Defined on a Set A = {A, B, C} as Follows: R1 = Find Whether Or Not Each of the Relations R1, R2, R3, R4 On A Is (I) Reflexive (Ii) Symmetric and (Iii) Transitive. - Mathematics

Advertisements
Advertisements

Question

Three relations R1, R2 and R3 are defined on a set A = {a, b, c} as follows:
R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}
R2 = {(a, a)}
R3 = {(b, c)}
R4 = {(a, b), (b, c), (c, a)}.

Find whether or not each of the relations R1, R2, R3, R4 on A is (i) reflexive (ii) symmetric and (iii) transitive.

Sum

Solution

(i) R1
Reflexive:
Clearly, (a, a), (b, b) and (c, c) ∈ R1

So, R1 is reflexive.

Symmetric:
We see that the ordered pairs obtained by interchanging the components of R1 are also in R1.
So, R1 is not symmetric.

Transitive:
Here,

(a, b)R1, (b, c)R1 and also (a, c)R1

So, R1 is transitive.

(ii) R2

Reflexive: Clearly (a,aR2 . So, R2 is reflexive.

Symmetric: Clearly (a,a⇒ (a,aR. So, R2 is symmetric.

Transitive: R2 is clearly a transitive relation, since there is only one element in it.

iii) R3
Reflexive:
Here,

(b, b)∉ R3 neither (c, c∉ R3

So, R3  is not reflexive.

Symmetric:
Here,

(b, cR3but (c,bR3

So,R3isnotsymmetric.

Transitive:
Here, R3 has only two elements. Hence, R3 is transitive.

(iv) R4
Reflexive:
Here,

(a, a∉ R4, (b, b) R4 (c, c) R4

So, R4 is not reflexive.

Symmetric:
Here,

(a, b)∈ R4, but (b,a∉ R4.

So, R4 is not symmetric

Transitive:
Here,

(a, b)R4, (b, c)R4, but (a, c)R4

So, R4 is not transitive.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations - Exercise 1.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 1 Relations
Exercise 1.1 | Q 2 | Page 10

RELATED QUESTIONS

Show that the relation R in the set of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.


Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a,b) : a = b} is an equivalence relation. Find the set of all elements related to 1 in each case.


Given an example of a relation. Which is Symmetric but neither reflexive nor transitive.


Let R be the relation in the set given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :

 R = {(x, y) : x and y work at the same place}


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :

R = {(x, y) : x and y live in the same locality}


Give an example of a relation which is symmetric and transitive but not reflexive?


Give an example of a relation which is symmetric but neither reflexive nor transitive?


Give an example of a relation which is transitive but neither reflexive nor symmetric?


Show that the relation R, defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides},
is an equivalence relation. What is the set of all elements in A related to the right-angled triangle T with sides 3, 4 and 5?


If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.


If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.


Write the identity relation on set A = {a, b, c}.


State the reason for the relation R on the set {1, 2, 3} given by R = {(1, 2), (2, 1)} to be transitive ?


Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(ab) : | a2b| < 8}. Write as a set of ordered pairs.


Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs


Write the smallest equivalence relation on the set A = {1, 2, 3} ?


Let R be a relation on N defined by x + 2y = 8. The domain of R is _______________ .


If R is a relation on the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9} given by x R y ⇔ y = 3 x, then R = _____________ .


Mark the correct alternative in the following question:

Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then, R is _____________ .


Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c   on the A x A  , where A =  {1, 2,3,...,10}  is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.


Write the relation in the Roster form and hence find its domain and range :
R1 = {(a, a2) / a is prime number less than 15}


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.


If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.


Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ______.


Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R ∶ B → B be defined by R = {(x, y): y is divisible by x} is ____________.

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R be a relation on B defined by R = {(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)}. Then R is:

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let relation R be defined by R = {(L1, L2): L1║L2 where L1, L2 ∈ L} then R is ____________ relation.

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let R = `{ ("L"_1, "L"_2) ∶ "L"_1 bot "L"_2  "where"  "L"_1, "L"_2 in "L" }` which of the following is true?

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let R = {(L1, L2 ): L1 is parallel to L2 and L1: y = x – 4} then which of the following can be taken as L2?

A relation in a set 'A' is known as empty relation:-


Given a non-empty set X, define the relation R in P(X) as follows:

For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.


Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.


Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].


A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×