English

Test Whether the Following Relations R1 Are (I) Reflexive (Ii) Symmetric and (Iii) Transitive : R1 On Q0 Defined by (A, B) ∈ R1 ⇔ A = 1/B. - Mathematics

Advertisements
Advertisements

Question

Test whether the following relation R1 is  (i) reflexive (ii) symmetric and (iii) transitive :

R1 on Q0 defined by (a, b) ∈ R1 ⇔ = 1/b.

Sum

Solution

1. Reflexivity:
Let a be an arbitrary element of R1. Then,

a ∈ R1

⇒ a ≠1/a for all a ∈ Q0

So, R1 is not reflexive.

2. Symmetry:
Let (a, b) ∈ R1 Then,

(a, b) ∈ R1

 a =`1/b`

⇒ `b = 1/a`

⇒ `(b, a) ∈ R_1`

So, R1 is symmetric.

3. Transitivity:
Here,

(a, b) ∈ R1 and (b, c) ∈R2

⇒ `a = 1/b and b = 1/c `

⇒ `a = 1/(1/c)=c`

⇒ `a ≠ 1/c`

⇒ (a ,c) ∉ R1

So, R1 is not transitive.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations - Exercise 1.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 1 Relations
Exercise 1.1 | Q 3.1 | Page 10

RELATED QUESTIONS

Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.


Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.


Show that the relation R defined in the set A of all polygons as R = {(P1P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?


Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(ab) : a∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]


The following relation is defined on the set of real numbers.
aRb if a – b > 0

Find whether relation is reflexive, symmetric or transitive.


If = {1, 2, 3, 4} define relations on A which have properties of being reflexive, transitive but not symmetric ?


Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?


Give an example of a relation which is reflexive and symmetric but not transitive ?


Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.


Defines a relation on :
  x > y, x, y ∈  N

Determine the above relation is reflexive, symmetric and transitive.


Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b},  is an equivalence relation.


Let n be a fixed positive integer. Define a relation R on Z as follows:
(a, b) ∈ R ⇔ a − b is divisible by n.
Show that R is an equivalence relation on Z.


If R = {(x, y) : x2 + y2 ≤ 4; x, y ∈ Z} is a relation on Z, write the domain of R.


If R is a symmetric relation on a set A, then write a relation between R and R−1.


Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?


Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .


Mark the correct alternative in the following question:

Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b for all a, b  T. Then, R is ____________ .


Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.


For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∪ C).


Let n be a fixed positive integer. Define a relation R in Z as follows: ∀ a, b ∈ Z, aRb if and only if a – b is divisible by n. Show that R is an equivalance relation


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
reflexive, symmetric and transitive


Give an example of a map which is neither one-one nor onto


Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.


Every relation which is symmetric and transitive is also reflexive.


Let A = {1, 2, 3, 4, 5, 6} Which of the following partitions of A correspond to an equivalence relation on A?


A relation R on a non – empty set A is an equivalence relation if it is ____________.


Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.


A relation S in the set of real numbers is defined as `"xSy" => "x" - "y" + sqrt3`  is an irrational number, then relation S is ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R: B → B be defined by R = {(1,1),(1,2), (2,2), (3,3), (4,4), (5,5), (6,6)}, then R is ____________.

Which one of the following relations on the set of real numbers R is an equivalence relation?


Define the relation R in the set N × N as follows:

For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.


Let R = {(x, y) : x, y ∈ N and x2 – 4xy + 3y2 = 0}, where N is the set of all natural numbers. Then the relation R is ______.


A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is ______.


Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×