Advertisements
Advertisements
Question
Mark the correct alternative in the following question:
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then, R is _____________ .
Options
Reflexive and symmetric
Transitive and symmetric
Equivalence
Reflexive, transitive but not symmetric
Solution
We have,
R = {(m, n) : n divides m; m, n ∈ N}
Hence, R is Reflexive, transitive but not symmetric.
APPEARS IN
RELATED QUESTIONS
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}
Show that the relation R in the set A of all the books in a library of a college, given by R = {(x, y): x and y have same number of pages} is an equivalence relation.
Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:
R = {(x, y) : x is father of and y}
Give an example of a relation which is symmetric but neither reflexive nor transitive?
Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.
Let A = {a, b, c} and the relation R be defined on A as follows: R = {(a, a), (b, c), (a, b)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.
Defines a relation on N :
x + y = 10, x, y∈ N
Determine the above relation is reflexive, symmetric and transitive.
Show that the relation R defined by R = {(a, b) : a – b is divisible by 3; a, b ∈ Z} is an equivalence relation.
Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.
Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.
Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.
Let Z be the set of all integers and Z0 be the set of all non-zero integers. Let a relation R on Z × Z0be defined as (a, b) R (c, d) ⇔ ad = bc for all (a, b), (c, d) ∈ Z × Z0,
Prove that R is an equivalence relation on Z × Z0.
Let C be the set of all complex numbers and C0 be the set of all no-zero complex numbers. Let a relation R on C0 be defined as
`z_1 R z_2 ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .
Show that R is an equivalence relation.
Write the domain of the relation R defined on the set Z of integers as follows:-
(a, b) ∈ R ⇔ a2 + b2 = 25
If R is a symmetric relation on a set A, then write a relation between R and R−1.
Write the smallest equivalence relation on the set A = {1, 2, 3} ?
Let A = {1, 2, 3}. Then, the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is ______.
A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .
Mark the correct alternative in the following question:
The relation S defined on the set R of all real number by the rule aSb if a b is _______________ .
Mark the correct alternative in the following question:
Consider a non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then, R is _____________ .
In the set of natural numbers N, define a relation R as follows: ∀ n, m ∈ N, nRm if on division by 5 each of the integers n and m leaves the remainder less than 5, i.e. one of the numbers 0, 1, 2, 3 and 4. Show that R is equivalence relation. Also, obtain the pairwise disjoint subsets determined by R
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from B to A
Give an example of a map which is one-one but not onto
The following defines a relation on N:
x + y = 10, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.
The relation R on the set A = {1, 2, 3} defined as R = {{1, 1), (1, 2), (2, 1), (3, 3)} is reflexive, symmetric and transitive.
Let A = {1, 2, 3}, then the relation R = {(1, 1), (1, 2), (2, 1)} on A is ____________.
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.
The relation R is defined on the set of natural numbers as {(a, b) : a = 2b}. Then, R-1 is given by ____________.
Given set A = {a, b, c}. An identity relation in set A is ____________.
The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.
The relation > (greater than) on the set of real numbers is
A relation 'R' in a set 'A' is called reflexive, if
Read the following passage:
An organization conducted bike race under two different categories – Boys and Girls. There were 28 participants in all. Among all of them, finally three from category 1 and two from category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. |
Based on the above information, answer the following questions:
- How many relations are possible from B to G? (1)
- Among all the possible relations from B to G, how many functions can be formed from B to G? (1)
- Let R : B `rightarrow` B be defined by R = {(x, y) : x and y are students of the same sex}. Check if R is an equivalence relation. (2)
OR
A function f : B `rightarrow` G be defined by f = {(b1, g1), (b2, g2), (b3, g1)}. Check if f is bijective. Justify your answer. (2)