Advertisements
Advertisements
Question
In the set of natural numbers N, define a relation R as follows: ∀ n, m ∈ N, nRm if on division by 5 each of the integers n and m leaves the remainder less than 5, i.e. one of the numbers 0, 1, 2, 3 and 4. Show that R is equivalence relation. Also, obtain the pairwise disjoint subsets determined by R
Solution
R is reflexive since for each a ∈ N, aRa.
R is symmetric since if aRb, then bRa for a, b ∈ N.
Also, R is transitive since for a, b, c ∈ N, if aRb and bRc, then aRc.
Hence R is an equivalence relation in N which will partition the set N into the pairwise disjoint subsets.
The equivalent classes are as mentioned below:
A0 = {5, 10, 15, 20 ...}
A1 = {1, 6, 11, 16, 21 ...}
A2 = {2, 7, 12, 17, 22, ...}
A3 = {3, 8, 13, 18, 23, ...}
A4 = {4, 9, 14, 19, 24, ...}
It is evident that the above five sets are pairwise disjoint and
A0 ∪ A1 ∪ A2 ∪ A3 ∪ A4 = `∪_("i" = 0)^4 "A"_"i"` = N.
APPEARS IN
RELATED QUESTIONS
Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
Check whether the relation R in R defined by R = {(a, b): a ≤ b3} is reflexive, symmetric, or transitive.
Show that the relation R in the set A of all the books in a library of a college, given by R = {(x, y): x and y have same number of pages} is an equivalence relation.
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:
R = {(x, y) : x is father of and y}
Let R be a relation defined on the set of natural numbers N as
R = {(x, y) : x, y ∈ N, 2x + y = 41}
Find the domain and range of R. Also, verify whether R is (i) reflexive, (ii) symmetric (iii) transitive.
Give an example of a relation which is reflexive and symmetric but not transitive ?
Show that the relation R defined by R = {(a, b) : a – b is divisible by 3; a, b ∈ Z} is an equivalence relation.
Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.
Let Z be the set of integers. Show that the relation
R = {(a, b) : a, b ∈ Z and a + b is even}
is an equivalence relation on Z.
Show that the relation R, defined in the set A of all polygons as R = {(P1, P2) : P1 and P2 have same number of sides},
is an equivalence relation. What is the set of all elements in A related to the right-angled triangle T with sides 3, 4 and 5?
If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.
Define a symmetric relation ?
Define a transitive relation ?
A = {1, 2, 3, 4, 5, 6, 7, 8} and if R = {(x, y) : y is one half of x; x, y ∈ A} is a relation on A, then write R as a set of ordered pairs.
Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.
The relation R defined on the set A = {1, 2, 3, 4, 5} by
R = {(a, b) : | a2 − b2 | < 16} is given by ______________ .
Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .
Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .
R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.
The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
Let R be the relation on N defined as by x + 2 y = 8 The domain of R is ____________.
Which of the following is not an equivalence relation on I, the set of integers: x, y
If f(x) = `1 - 1/"x", "then f"("f"(1/"x"))` ____________.
If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.
The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.
A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-
Which of the following is/are example of symmetric
Let R = {(a, b): a = a2} for all, a, b ∈ N, then R salifies.
If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.