Advertisements
Advertisements
Question
The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
Solution
Given, xy is square of an integer x, y ∈ N
R = {(x, y): xy is a square of an integer x, y ∈ N}
It’s clearly (x, x) ∈ R, ∀ x ∈ N
As x2 is square of an integer for any x ∈ N
Thus, R is reflexive.
If (x, y) ∈ R ⇒ (y, x) ∈ R
So, R is symmetric.
Now, if xy is square of an integer and yz is square of an integer.
Then, let xy = m2 and yz = n2 for some m, n ∈ Z
x =`"m"^2/y` and z = `x^2/y`
xz = `("m"^2"n"^2)/y^2`, which is square of an integer.
Thus, R is transitive.
APPEARS IN
RELATED QUESTIONS
Show that the relation R defined in the set A of all triangles as R = {(T1, T2): T1 is similar to T2}, is equivalence relation. Consider three right angle triangles T1 with sides 3, 4, 5, T2 with sides 5, 12, 13 and T3 with sides 6, 8, and 10. Which triangles among T1, T2 and T3 are related?
Let A = {1, 2, 3}, and let R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 = {(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Find whether or not each of the relations R1, R2, R3 on A is (i) reflexive (ii) symmetric (iii) transitive.
Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, transitive but not symmetric ?
Give an example of a relation which is symmetric but neither reflexive nor transitive?
Give an example of a relation which is transitive but neither reflexive nor symmetric?
Let R be the relation defined on the set A = {1, 2, 3, 4, 5, 6, 7} by R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence relation. Further, show that all the elements of the subset {1, 3, 5, 7} are related to each other and all the elements of the subset {2, 4, 6} are related to each other, but no element of the subset {1, 3, 5, 7} is related to any element of the subset {2, 4, 6}.
Write the smallest reflexive relation on set A = {1, 2, 3, 4}.
If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.
If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .
The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .
Mark the correct alternative in the following question:
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then, R is _____________ .
In the set of natural numbers N, define a relation R as follows: ∀ n, m ∈ N, nRm if on division by 5 each of the integers n and m leaves the remainder less than 5, i.e. one of the numbers 0, 1, 2, 3 and 4. Show that R is equivalence relation. Also, obtain the pairwise disjoint subsets determined by R
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.
Let us define a relation R in R as aRb if a ≥ b. Then R is ______.
Let R = {(3, 1), (1, 3), (3, 3)} be a relation defined on the set A = {1, 2, 3}. Then R is symmetric, transitive but not reflexive.
Which of the following is not an equivalence relation on I, the set of integers: x, y
Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?
If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.
Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.
Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.
Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is ____________.
Let R be a relation on the set N of natural numbers denoted by nRm ⇔ n is a factor of m (i.e. n | m). Then, R is ____________.
Let A = {x : -1 ≤ x ≤ 1} and f : A → A is a function defined by f(x) = x |x| then f is ____________.
Which one of the following relations on the set of real numbers R is an equivalence relation?
Let R = {(a, b): a = a2} for all, a, b ∈ N, then R salifies.
Given a non-empty set X, define the relation R in P(X) as follows:
For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.
Read the following passage:
An organization conducted bike race under two different categories – Boys and Girls. There were 28 participants in all. Among all of them, finally three from category 1 and two from category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. |
Based on the above information, answer the following questions:
- How many relations are possible from B to G? (1)
- Among all the possible relations from B to G, how many functions can be formed from B to G? (1)
- Let R : B `rightarrow` B be defined by R = {(x, y) : x and y are students of the same sex}. Check if R is an equivalence relation. (2)
OR
A function f : B `rightarrow` G be defined by f = {(b1, g1), (b2, g2), (b3, g1)}. Check if f is bijective. Justify your answer. (2)
If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.