Advertisements
Advertisements
Question
Show that the relation R defined in the set A of all triangles as R = {(T1, T2): T1 is similar to T2}, is equivalence relation. Consider three right angle triangles T1 with sides 3, 4, 5, T2 with sides 5, 12, 13 and T3 with sides 6, 8, and 10. Which triangles among T1, T2 and T3 are related?
Solution
(i) Reflexive:
R = {(T1, T2): T1 is similar to T2}
R is reflexive since every triangle is similar to itself.
∴ R is reflexive
(ii) Symmetric:
Further, if (T1, T2) ∈ R, then T1 is similar to T2.
⇒ T2 is similar to T1.
⇒ (T2, T1) ∈R
∴ R is symmetric.
(iii) Transitive:
Now, let (T1, T2), (T2, T3) ∈ R.
⇒ T1 is similar to T2 and T2 is similar to T3.
⇒ T1 is similar to T3.
⇒ (T1, T3) ∈ R
∴ R is transitive.
Thus, R is an equivalence relation.
Now, we can observe that:
`3/6 = 4/8 = 5/10 (=1/2)`
The corresponding sides of triangles T1 and T3 are in the same ratio.
Then, triangle T1 is similar to triangle T3.
Hence, T1 is related to T3.
APPEARS IN
RELATED QUESTIONS
Given an example of a relation. Which is Symmetric but neither reflexive nor transitive.
Given an example of a relation. Which is Symmetric and transitive but not reflexive.
Show that the relation R defined in the set A of all polygons as R = {(P1, P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?
Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
Let R be the relation in the set N given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.
Test whether the following relation R2 is (i) reflexive (ii) symmetric and (iii) transitive:
R2 on Z defined by (a, b) ∈ R2 ⇔ |a – b| ≤ 5
If A = {1, 2, 3, 4} define relations on A which have properties of being reflexive, symmetric and transitive ?
Show that the relation R defined by R = {(a, b) : a – b is divisible by 3; a, b ∈ Z} is an equivalence relation.
Let L be the set of all lines in XY-plane and R be the relation in L defined as R = {L1, L2) : L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y= 2x + 4.
Let S be a relation on the set R of all real numbers defined by
S = {(a, b) ∈ R × R : a2 + b2 = 1}
Prove that S is not an equivalence relation on R.
Let C be the set of all complex numbers and C0 be the set of all no-zero complex numbers. Let a relation R on C0 be defined as
`z_1 R z_2 ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .
Show that R is an equivalence relation.
Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs
R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .
The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .
Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .
If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .
The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .
In the set Z of all integers, which of the following relation R is not an equivalence relation ?
Mark the correct alternative in the following question:
Consider a non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then, R is _____________ .
Show that the relation R on the set Z of integers, given by R = {(a,b):2divides (a - b)} is an equivalence relation.
If f (x) = `(4x + 3)/(6x - 4) , x ≠ 2/3`, show that fof (x) = x for all ` x ≠ 2/3` . Also, find the inverse of f.
For the matrix A = `[(2,3),(5,7)]`, find (A + A') and verify that it is a symmetric matrix.
If A = {a, b, c}, B = (x , y} find A × A.
If A = {a, b, c}, B = (x , y} find B × B.
R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.
Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, symmetric and transitive
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
an injective mapping from A to B
If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.
Let us define a relation R in R as aRb if a ≥ b. Then R is ______.
Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?
Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.
Total number of equivalence relations defined in the set S = {a, b, c} is ____________.
Let the relation R in the set A = {x ∈ Z : 0 ≤ x ≤ 12}, given by R = {(a, b) : |a – b| is a multiple of 4}. Then [1], the equivalence class containing 1, is:
A relation in a set 'A' is known as empty relation:-
A relation 'R' in a set 'A' is called reflexive, if
Given a non-empty set X, define the relation R in P(X) as follows:
For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.
Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.
Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.
Let A = {3, 5}. Then number of reflexive relations on A is ______.