English

The Relation 'R' in N × N Such that (A, B) R (C, D) ⇔ a + D = B + C is (A) Reflexive but Not Symmetric (B) Reflexive and Transitive but Not Symmetric (C) an Equivalence Relation (D) None of the These - Mathematics

Advertisements
Advertisements

Question

The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .

Options

  • reflexive but not symmetric

  • reflexive and transitive but not symmetric

  • an equivalence relation

  • none of the these

MCQ

Solution

an equivalence relation

We observe the following properties of relation R.

Reflexivity: Let (a, b∈ × N

⇒ a, ∈ N

⇒ a+b+a

⇒ (a, b∈ R

So, R is reflexive on N×N.

Symmetry: Let (a, b), (c, d∈ N × N such that (a, b) R (c, d)

⇒ a+b+c

⇒ d++b

⇒ (d, c), (b, a∈ R 

So, R is symmetric on N×N.

Transitivity : Let (a, b), (c, d), (e, f∈ N×N such that (a, b) R (c, d) and (c, d) R (e, f)

⇒ a+b+c and c+d+e

⇒ +e

⇒ e

(a, b) R (e, f)

So, R is transitive on N×N.

Hence, R is an equivalence relation on N.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations - Exercise 1.4 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 1 Relations
Exercise 1.4 | Q 9 | Page 31

RELATED QUESTIONS

Show that the relation R defined in the set A of all triangles as R = {(T1, T2): T1 is similar to T2}, is equivalence relation. Consider three right angle triangles T1 with sides 3, 4, 5, T2 with sides 5, 12, 13 and T3 with sides 6, 8, and 10. Which triangles among T1, T2 and T3 are related?


Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.


Given a non-empty set X, consider P (X), which is the set of all subsets of X. Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X)? Justify your answer.


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

R = {(x, y) : x is father of and y}


If = {1, 2, 3, 4} define relations on A which have properties of being reflexive, transitive but not symmetric ?


Let L be the set of all lines in XY-plane and R be the relation in L defined as R = {L1, L2) : L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y= 2x + 4.


Let S be a relation on the set R of all real numbers defined by
S = {(a, b) ∈ R × R : a2 + b2 = 1}
Prove that S is not an equivalence relation on R.


If R and S are relations on a set A, then prove that R is reflexive and S is any relation ⇒ R ∪ S is reflexive ?


If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.


Write the domain of the relation R defined on the set Z of integers as follows:-
(a, b) ∈ R ⇔ a2 + b2 = 25


Write the smallest reflexive relation on set A = {1, 2, 3, 4}.


If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.


Define an equivalence relation ?


If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.


Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?


If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________


Mark the correct alternative in the following question:

Consider a non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then, R is _____________ .


Show that the relation S in the set A = [x ∈ Z : 0 ≤ x ≤ 12] given by S = [(a, b) : a, b ∈ Z, ∣a − b∣ is divisible by 3] is an equivalence relation.


Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.


Let A = {0, 1, 2, 3} and define a relation R on A as follows: R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}. Is R reflexive? symmetric? transitive?


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
an injective mapping from A to B


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from B to A


The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.


Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.


Total number of equivalence relations defined in the set S = {a, b, c} is ____________.


Let the relation R in the set A = {x ∈ Z : 0 ≤ x ≤ 12}, given by R = {(a, b) : |a – b| is a multiple of 4}. Then [1], the equivalence class containing 1, is:


Given set A = {a, b, c}. An identity relation in set A is ____________.


The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.


A market research group conducted a survey of 2000 consumers and reported that 1720 consumers like product P1 and 1450 consumers like product P2. What is the least number that must have liked both the products?


A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-


Which of the following is/are example of symmetric


Let R1 and R2 be two relations defined as follows :

R1 = {(a, b) ∈ R2 : a2 + b2 ∈ Q} and

R2 = {(a, b) ∈ R2 : a2 + b2 ∉ Q}, where Q is the set of all rational numbers. Then ______


Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.


Statement 1: The intersection of two equivalence relations is always an equivalence relation.

Statement 2: The Union of two equivalence relations is always an equivalence relation.

Which one of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×