English

If a Relation R is Defined on the Set Z of Integers as Follows: (A, B) ∈ R ⇔ A2 + B2 = 25. Then, Domain (R) is (A) {3, 4, 5} (B) {0, 3, 4, 5} (C) {0, ± 3, ± 4, ± 5} (D) None of These - Mathematics

Advertisements
Advertisements

Question

If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________

Options

  • {3, 4, 5}

  • {0, 3, 4, 5}

  • {0, ±3, ±4, ±5}

  • None of these

MCQ

Solution

{0, ± 3, ± 4, ± 5}

R=(a, b) : a2 + b2 =25, a, ∈ }

⇒ ∈ {5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5} and 

∈ {5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5}

So, domain (R){0, ±3, ±4, ±5}

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations - Exercise 1.4 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 1 Relations
Exercise 1.4 | Q 2 | Page 31

RELATED QUESTIONS

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}


Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.


Given an example of a relation. Which is Symmetric and transitive but not reflexive.


Let R be the relation in the set given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.


Given a non-empty set X, consider P (X), which is the set of all subsets of X. Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X)? Justify your answer.


Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(ab) : a∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]


Test whether the following relation R3 is (i) reflexive (ii) symmetric and (iii) transitive:

R3 on R is defined by (a, b) ∈ R3 `⇔` a2 – 4ab + 3b2 = 0.


The following relation is defined on the set of real numbers.
aRb if a – b > 0

Find whether relation is reflexive, symmetric or transitive.


The following relation is defined on the set of real numbers.

aRb if 1 + ab > 0

Find whether relation is reflexive, symmetric or transitive.


Defines a relation on N :

xy is square of an integer, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.


Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.


Write the identity relation on set A = {a, b, c}.


Let R = {(a, a3) : a is a prime number less than 5} be a relation. Find the range of R.


Let A = {1, 2, 3}. Then, the number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is ______.


Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .


If R is a relation on the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9} given by x R y ⇔ y = 3 x, then R = _____________ .


If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).


Write the relation in the Roster form and hence find its domain and range :
R1 = {(a, a2) / a is prime number less than 15}


Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if and only if l is perpendicular to m ∀ l, m ∈ L. Then R is ______.


For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from B to A


If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.


Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.


Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.


Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.


Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is ____________.


Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.


The relation > (greater than) on the set of real numbers is


The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is


A market research group conducted a survey of 2000 consumers and reported that 1720 consumers like product P1 and 1450 consumers like product P2. What is the least number that must have liked both the products?


Define the relation R in the set N × N as follows:

For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.


Given a non-empty set X, define the relation R in P(X) as follows:

For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.


Let A = {3, 5}. Then number of reflexive relations on A is ______.


Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].


Statement 1: The intersection of two equivalence relations is always an equivalence relation.

Statement 2: The Union of two equivalence relations is always an equivalence relation.

Which one of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×