Advertisements
Advertisements
प्रश्न
The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .
विकल्प
reflexive but not symmetric
reflexive and transitive but not symmetric
an equivalence relation
none of the these
उत्तर
an equivalence relation
We observe the following properties of relation R.
Reflexivity: Let (a, b) ∈ N × N
⇒ a, b ∈ N
⇒ a+b = b+a
⇒ (a, b) ∈ R
So, R is reflexive on N×N.
Symmetry: Let (a, b), (c, d) ∈ N × N such that (a, b) R (c, d)
⇒ a+d = b+c
⇒ d+a = c +b
⇒ (d, c), (b, a) ∈ R
So, R is symmetric on N×N.
Transitivity : Let (a, b), (c, d), (e, f) ∈ N×N such that (a, b) R (c, d) and (c, d) R (e, f)
⇒ a+d = b+c and c+f = d+e
⇒ a + d +c + f = b + c + d + e
⇒ a + f = b + e
⇒(a, b) R (e, f)
So, R is transitive on N×N.
Hence, R is an equivalence relation on N.
APPEARS IN
संबंधित प्रश्न
Given an example of a relation. Which is Reflexive and symmetric but not transitive.
Let R be the relation in the set N given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.
Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is
(A) 1
(B) 2
(C) 3
(D) 4
Let A = {1, 2, 3}, and let R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 = {(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Find whether or not each of the relations R1, R2, R3 on A is (i) reflexive (ii) symmetric (iii) transitive.
The following relation is defined on the set of real numbers. aRb if |a| ≤ b
Find whether relation is reflexive, symmetric or transitive.
Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.
Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.
Let L be the set of all lines in XY-plane and R be the relation in L defined as R = {L1, L2) : L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y= 2x + 4.
Let S be a relation on the set R of all real numbers defined by
S = {(a, b) ∈ R × R : a2 + b2 = 1}
Prove that S is not an equivalence relation on R.
If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.
If R = {(x, y) : x + 2y = 8} is a relation on N by, then write the range of R.
Let R = {(x, y) : |x2 − y2| <1) be a relation on set A = {1, 2, 3, 4, 5}. Write R as a set of ordered pairs.
Define an equivalence relation ?
A = {1, 2, 3, 4, 5, 6, 7, 8} and if R = {(x, y) : y is one half of x; x, y ∈ A} is a relation on A, then write R as a set of ordered pairs.
Mark the correct alternative in the following question:
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b for all a, b T. Then, R is ____________ .
Show that the relation R on the set Z of integers, given by R = {(a,b):2divides (a - b)} is an equivalence relation.
Show that the relation R on the set Z of all integers, given by R = {(a,b) : 2 divides (a-b)} is an equivalence relation.
Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.
Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c on the A x A , where A = {1, 2,3,...,10} is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).
Let A = {a, b, c} and the relation R be defined on A as follows:
R = {(a, a), (b, c), (a, b)}.
Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive
Give an example of a map which is one-one but not onto
Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.
The relation R on the set A = {1, 2, 3} defined as R = {{1, 1), (1, 2), (2, 1), (3, 3)} is reflexive, symmetric and transitive.
If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.
Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is ____________.
The relation R is defined on the set of natural numbers as {(a, b) : a = 2b}. Then, R-1 is given by ____________.
Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Ravi wishes to form all the relations possible from B to G. How many such relations are possible?
If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.
If A is a finite set consisting of n elements, then the number of reflexive relations on A is
The relation > (greater than) on the set of real numbers is
The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is
Given a non-empty set X, define the relation R in P(X) as follows:
For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.
Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______.
A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is ______.