Advertisements
Advertisements
प्रश्न
The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .
पर्याय
reflexive but not symmetric
reflexive and transitive but not symmetric
an equivalence relation
none of the these
उत्तर
an equivalence relation
We observe the following properties of relation R.
Reflexivity: Let (a, b) ∈ N × N
⇒ a, b ∈ N
⇒ a+b = b+a
⇒ (a, b) ∈ R
So, R is reflexive on N×N.
Symmetry: Let (a, b), (c, d) ∈ N × N such that (a, b) R (c, d)
⇒ a+d = b+c
⇒ d+a = c +b
⇒ (d, c), (b, a) ∈ R
So, R is symmetric on N×N.
Transitivity : Let (a, b), (c, d), (e, f) ∈ N×N such that (a, b) R (c, d) and (c, d) R (e, f)
⇒ a+d = b+c and c+f = d+e
⇒ a + d +c + f = b + c + d + e
⇒ a + f = b + e
⇒(a, b) R (e, f)
So, R is transitive on N×N.
Hence, R is an equivalence relation on N.
APPEARS IN
संबंधित प्रश्न
If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}
Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a,b) : a = b} is an equivalence relation. Find the set of all elements related to 1 in each case.
Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.
Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.
Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.
Let A = {a, b, c} and the relation R be defined on A as follows: R = {(a, a), (b, c), (a, b)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.
Defines a relation on N:
x + 4y = 10, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.
Let S be a relation on the set R of all real numbers defined by
S = {(a, b) ∈ R × R : a2 + b2 = 1}
Prove that S is not an equivalence relation on R.
Write the smallest reflexive relation on set A = {1, 2, 3, 4}.
Define an equivalence relation ?
If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.
Let R be the equivalence relation on the set Z of the integers given by R = { (a, b) : 2 divides a - b }.
Write the equivalence class [0].
Write the smallest equivalence relation on the set A = {1, 2, 3} ?
Let R be a relation on N defined by x + 2y = 8. The domain of R is _______________ .
Let A = {1, 2, 3} and B = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ________________ .
If A = {a, b, c, d}, then a relation R = {(a, b), (b, a), (a, a)} on A is _____________ .
The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .
Mark the correct alternative in the following question:
Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m ∈ L. Then, R is ______________ .
Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.
Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c on the A x A , where A = {1, 2,3,...,10} is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.
Consider the set A = {1, 2, 3} and R be the smallest equivalence relation on A, then R = ______
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from A to B which is not injective
Let A = {1, 2, 3, ... 9} and R be the relation in A × A defined by (a, b) R(c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation and also obtain the equivalent class [(2, 5)]
The maximum number of equivalence relations on the set A = {1, 2, 3} are ______.
Every relation which is symmetric and transitive is also reflexive.
Let A = { 2, 3, 6 } Which of the following relations on A are reflexive?
Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?
Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is ____________.
Total number of equivalence relations defined in the set S = {a, b, c} is ____________.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let relation R be defined by R = {(L1, L2): L1║L2 where L1, L2 ∈ L} then R is ____________ relation.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let R = `{ ("L"_1, "L"_2) ∶ "L"_1 bot "L"_2 "where" "L"_1, "L"_2 in "L" }` which of the following is true?
On the set N of all natural numbers, define the relation R by a R b, if GCD of a and b is 2. Then, R is
Define the relation R in the set N × N as follows:
For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.
Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].
A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is ______.