Advertisements
Advertisements
प्रश्न
Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c on the A x A , where A = {1, 2,3,...,10} is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.
उत्तर
Here (a, b)R(c,d) ⇒ a + d = b + c on A x A, where A = {1, 2,3,...,10} .
Reflexivity: Let (a, b) be an arbitrary element of A x A. Then, (a,b) ∈ A x A `forall` a, b ∈ A.
So, a + b = b + a
⇒ (a,b) R (a,b).
Thus, (a,b) R (a,b) `forall` (a,b) ∈ A x A.
Hence R is reflexive.
Symmetry: Let (a,b), (c,d) ∈ A x A be such that (a,b) R (c,d).
Then, a + d = b + c
⇒ c + b = d + a
⇒ (c,d ) R (a,b).
Thus, (a,b) R (c,d)
⇒ (c,d) R (a,b) `forall` (a,b), (c,d) ∈ A x A.
Hence R is symmetric.
Transitivity: Let (a,b),(c,d),(e,f) ∈ A x A be such that (a,b) R (c,d) R (e,f).
Then, a + d = b + c and c + f = d + e
⇒ (a+d) + (c+f)
= (b + c) + (d+e)
⇒ a + f = b + e
⇒ (a, b) R (e,f).
That is (a,b) R (c,d) and (c,d) R (e,f)
⇒ (a,b) R (e,f) `forall` (a,b), (c,d), (e,f) ∈ A x A.
Hence R is transitive.
Since R is reflexive, symmetric and transitive so, R is an equivalence relation as well.
For the equivalence class of [(3, 4)], we need to find (a,b) s.t. (a,b) R (3,4)
⇒ a + 4 = b + 3
⇒ b - a = 1.
So, [(3,4)] = {(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10)}.
APPEARS IN
संबंधित प्रश्न
determination of whether the following relations are reflexive, symmetric, and transitive:
Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}
Show that the relation R in R defined as R = {(a, b): a ≤ b}, is reflexive and transitive but not symmetric.
Test whether the following relation R1 is (i) reflexive (ii) symmetric and (iii) transitive :
R1 on Q0 defined by (a, b) ∈ R1 ⇔ a = 1/b.
Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.
Give an example of a relation which is reflexive and transitive but not symmetric ?
Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.
Show that the relation R defined by R = {(a, b) : a – b is divisible by 3; a, b ∈ Z} is an equivalence relation.
Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs
Let R be the relation over the set of all straight lines in a plane such that l1 R l2 ⇔ l 1⊥ l2. Then, R is _____________ .
Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .
A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .
Mark the correct alternative in the following question:
The relation S defined on the set R of all real number by the rule aSb if a b is _______________ .
Let A = {0, 1, 2, 3} and define a relation R on A as follows: R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}. Is R reflexive? symmetric? transitive?
In the set of natural numbers N, define a relation R as follows: ∀ n, m ∈ N, nRm if on division by 5 each of the integers n and m leaves the remainder less than 5, i.e. one of the numbers 0, 1, 2, 3 and 4. Show that R is equivalence relation. Also, obtain the pairwise disjoint subsets determined by R
Let A = {a, b, c} and the relation R be defined on A as follows:
R = {(a, a), (b, c), (a, b)}.
Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
symmetric but neither reflexive nor transitive
The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.
If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.
A relation R on a non – empty set A is an equivalence relation if it is ____________.
If f(x) = `1 - 1/"x", "then f"("f"(1/"x"))` ____________.
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Let R ∶ B → B be defined by R = {(x, y): y is divisible by x} is ____________.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let R = `{ ("L"_1, "L"_2) ∶ "L"_1 bot "L"_2 "where" "L"_1, "L"_2 in "L" }` which of the following is true?
Find: `int (x + 1)/((x^2 + 1)x) dx`
A relation in a set 'A' is known as empty relation:-
If f(x + 2a) = f(x – 2a), then f(x) is:
Let R1 and R2 be two relations defined as follows :
R1 = {(a, b) ∈ R2 : a2 + b2 ∈ Q} and
R2 = {(a, b) ∈ R2 : a2 + b2 ∉ Q}, where Q is the set of all rational numbers. Then ______
Let R = {(x, y) : x, y ∈ N and x2 – 4xy + 3y2 = 0}, where N is the set of all natural numbers. Then the relation R is ______.
Let A = {3, 5}. Then number of reflexive relations on A is ______.