हिंदी

Show that the Relation R Defined by (A, B)R(C,D) ⇒ a + D = B + C  on the a X a , Where a = {1, 2,3,...,10} is an Equivalence Relation. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c   on the A x A  , where A =  {1, 2,3,...,10}  is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.

योग

उत्तर

Here (a, b)R(c,d) ⇒ a + d = b + c on A x A, where A =  {1, 2,3,...,10} .

Reflexivity: Let (a, b) be an arbitrary element of A x A. Then, (a,b) ∈ A x A `forall` a, b ∈  A.


So, a + b = b + a 
⇒ (a,b) R (a,b).


Thus, (a,b) R (a,b) `forall` (a,b) ∈  A x A.
Hence R is reflexive.


Symmetry: Let (a,b), (c,d) ∈ A x A be such that (a,b) R (c,d).


Then, a + d = b + c 
⇒ c + b = d + a 
⇒ (c,d ) R (a,b).


Thus, (a,b) R (c,d)
⇒ (c,d) R (a,b) `forall` (a,b), (c,d) ∈  A x A.
Hence R is symmetric.


Transitivity: Let (a,b),(c,d),(e,f) ∈  A x A be such that (a,b) R (c,d) R (e,f).

Then, a + d = b + c and c + f = d + e
⇒ (a+d) + (c+f)
= (b + c) + (d+e)

⇒ a + f = b + e
⇒ (a, b) R (e,f).


That is (a,b) R (c,d) and (c,d) R (e,f)
⇒ (a,b) R (e,f) `forall` (a,b), (c,d), (e,f) ∈  A x A.

Hence R is transitive.

Since R is reflexive, symmetric and transitive so, R is an equivalence relation as well.

For the equivalence class of [(3, 4)], we need to find (a,b) s.t. (a,b) R (3,4)
⇒ a + 4 = b + 3
⇒ b - a = 1.

So, [(3,4)] = {(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10)}.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) All India Set 1 E

संबंधित प्रश्न

Let A = {1, 2, 3,......, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)].


If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.


Defines a relation on N:

x + 4y = 10, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


Let C be the set of all complex numbers and Cbe the set of all no-zero complex numbers. Let a relation R on Cbe defined as

`z_1 R  z_2  ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .

Show that R is an equivalence relation.


Let R = {(x, y) : |x2 − y2| <1) be a relation on set A = {1, 2, 3, 4, 5}. Write R as a set of ordered pairs.


If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.


Define a symmetric relation ?


If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.


Let R be a relation on the set N given by
R = {(a, b) : a = b − 2, b > 6}. Then,


A relation ϕ from C to R is defined by x ϕ y ⇔ | x | = y. Which one is correct?


Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .


If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .


Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .


The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .


Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.


Every relation which is symmetric and transitive is also reflexive.


An integer m is said to be related to another integer n if m is a integral multiple of n. This relation in Z is reflexive, symmetric and transitive.


Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ____________.


Let A = {x : -1 ≤ x ≤ 1} and f : A → A is a function defined by f(x) = x |x| then f is ____________.


A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?


Let the relation R in the set A = {x ∈ Z : 0 ≤ x ≤ 12}, given by R = {(a, b) : |a – b| is a multiple of 4}. Then [1], the equivalence class containing 1, is:


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • The above-defined relation R is ____________.

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R: B → B be defined by R = {(1,1),(1,2), (2,2), (3,3), (4,4), (5,5), (6,6)}, then R is ____________.

An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Let R: B → B be defined by R = {(x, y): x and y are students of same sex}, Then this relation R is ____________.

The value of k for which the system of equations x + ky + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 has nontrivial solution is


A relation in a set 'A' is known as empty relation:-


Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______.


Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×