Advertisements
Advertisements
प्रश्न
Let A = {1, 2, 3,......, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)].
उत्तर
A = {1, 2, 3, ..., 9} ⊂ ℕ, the set of natural numbers
Let R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A.
We have to show that R is an equivalence relation.
Reflexivity:
Let (a, b) be an arbitrary element of A × A. Then, we have:
(a, b) ∈ A × A
⇒ a, b ∈ A
⇒ a + b = b + a (by commutativity of addition on A ⊂ ℕ)
⇒ (a, b) R (a, b)
Thus, (a, b) R (a, b) for all (a, b) ∈ A × A.
So, R is reflexive.
Symmetry:
Let (a, b), (c, d) ∈ A × A such that (a, b) R (c, d).
a + d = b + c
⇒ b + c = a + d
⇒ c + b = d + a (by commutativity of addition on A ⊂ ℕ)
⇒ (c, d) R (a, b)
Thus, (a, b) R (c, d) ⇒ (c, d) R (a, b) for all (a, b), (c, d) ∈ A × A.
So, R is symmetric
Transitivity:
Let (a, b), (c, d), (e, f) ∈ A × A such that (a, b) R (c, d) and (c, d) R (e, f). Then, we have:
(a, b) R (c, d)
⇒ a + d = b + c ... (1)
(c, d) R (e, f)
⇒ c + f = d + e ... (2)
Adding equations (1) and (2), we get:
(a + d) + (c + f) = (b + c) + (d + e)
⇒ a + f = b + e
⇒ (a, b) R (e, f)
Thus, (a, b) R (c, d) and (c, d) R (e, f) ⇒ (a, b) R (e, f) for all (a, b), (c, d), (e, f) ∈ A × A.
So, R is transitive on A × A.
Thus, R is reflexive, symmetric and transitive.
∴ R is an equivalence relation.
To write the equivalence class of [(2, 5)], we need to search all the elements of the type (a, b) such that 2 + b = 5 + a.
∴ Equivalence class of [(2, 5)] = {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)}
APPEARS IN
संबंधित प्रश्न
Show that the relation R in the set A of all the books in a library of a college, given by R = {(x, y): x and y have same number of pages} is an equivalence relation.
Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.
Given an example of a relation. Which is Reflexive and symmetric but not transitive.
Given an example of a relation. Which is Reflexive and transitive but not symmetric.
Show that the relation R defined in the set A of all triangles as R = {(T1, T2): T1 is similar to T2}, is equivalence relation. Consider three right angle triangles T1 with sides 3, 4, 5, T2 with sides 5, 12, 13 and T3 with sides 6, 8, and 10. Which triangles among T1, T2 and T3 are related?
Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
Given a non-empty set X, consider P (X), which is the set of all subsets of X. Define the relation R in P(X) as follows:
For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X)? Justify your answer.
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive :
R = {(x, y) : x and y live in the same locality}
Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.
m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?
Let C be the set of all complex numbers and C0 be the set of all no-zero complex numbers. Let a relation R on C0 be defined as
`z_1 R z_2 ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .
Show that R is an equivalence relation.
Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.
State the reason for the relation R on the set {1, 2, 3} given by R = {(1, 2), (2, 1)} to be transitive ?
Let R be the relation over the set of all straight lines in a plane such that l1 R l2 ⇔ l 1⊥ l2. Then, R is _____________ .
Mark the correct alternative in the following question:
For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .
If f (x) = `(4x + 3)/(6x - 4) , x ≠ 2/3`, show that fof (x) = x for all ` x ≠ 2/3` . Also, find the inverse of f.
Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c on the A x A , where A = {1, 2,3,...,10} is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.
If A = {a, b, c}, B = (x , y} find B × A.
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.
Let n be a fixed positive integer. Define a relation R in Z as follows: ∀ a, b ∈ Z, aRb if and only if a – b is divisible by n. Show that R is an equivalance relation
Give an example of a map which is not one-one but onto
Let A = {1, 2, 3} and consider the relation R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}. Then R is ______.
Let A = { 2, 3, 6 } Which of the following relations on A are reflexive?
Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.
Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.
Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.
Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.
A = {S, D}, B = {1,2,3,4,5,6}
- Raji wants to know the number of relations possible from A to B. How many numbers of relations are possible?
If A = {1,2,3}, B = {4,6,9} and R is a relation from A to B defined by ‘x is smaller than y’. The range of R is ____________.
The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is
Given a non-empty set X, define the relation R in P(X) as follows:
For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.