Advertisements
Advertisements
प्रश्न
Show that the relation R in the set A of all the books in a library of a college, given by R = {(x, y): x and y have same number of pages} is an equivalence relation.
उत्तर
Set A is the set of all books in the library of a college.
(i) Reflexive:
R = {x, y): x and y have the same number of pages}
since (x, x) ∈ R as x and x have the same number of pages.
∴ R is reflexive
(ii) Symmetric:
Let (x, y) ∈ R
⇒ x and y have the same number of pages.
⇒ y and x have the same number of pages.
⇒ (y, x) ∈ R
∴ R is symmetric.
(iii) Transitive:
Now, let (x, y) ∈ R and (y, z) ∈ R.
⇒ x and y have the same number of pages and y and z have the same number of pages.
⇒ x and z have the same number of pages.
⇒ (x, z) ∈ R
∴R is transitive.
Hence, R is an equivalence relation.
APPEARS IN
संबंधित प्रश्न
If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.
Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.
Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.
Given an example of a relation. Which is Reflexive and transitive but not symmetric.
Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
Let A = {1, 2, 3}. Then number of equivalence relations containing (1, 2) is
(A) 1
(B) 2
(C) 3
(D) 4
Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(a, b) : a, b ∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]
The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4
Let A = {1, 2, 3}, and let R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 = {(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Find whether or not each of the relations R1, R2, R3 on A is (i) reflexive (ii) symmetric (iii) transitive.
Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.
Let A = {a, b, c} and the relation R be defined on A as follows: R = {(a, a), (b, c), (a, b)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.
Let A = {3, 5, 7}, B = {2, 6, 10} and R be a relation from A to B defined by R = {(x, y) : x and y are relatively prime}. Then, write R and R−1.
Define a transitive relation ?
Define an equivalence relation ?
If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.
State the reason for the relation R on the set {1, 2, 3} given by R = {(1, 2), (2, 1)} to be transitive ?
For the set A = {1, 2, 3}, define a relation R on the set A as follows:
R = {(1, 1), (2, 2), (3, 3), (1, 3)}
Write the ordered pairs to be added to R to make the smallest equivalence relation.
Let R be a relation on N defined by x + 2y = 8. The domain of R is _______________ .
S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .
If A = {a, b, c}, B = (x , y} find B × B.
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.
For real numbers x and y, define xRy if and only if x – y + `sqrt(2)` is an irrational number. Then the relation R is ______.
Let A = {a, b, c} and the relation R be defined on A as follows:
R = {(a, a), (b, c), (a, b)}.
Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive
If A = {1, 2, 3, 4 }, define relations on A which have properties of being:
reflexive, symmetric and transitive
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from A to B which is not injective
The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.
Let us define a relation R in R as aRb if a ≥ b. Then R is ______.
Let R be the relation on N defined as by x + 2 y = 8 The domain of R is ____________.
If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.
Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.
Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is ____________.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let relation R be defined by R = {(L1, L2): L1║L2 where L1, L2 ∈ L} then R is ____________ relation.
The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.
Which of the following is/are example of symmetric
Let R = {(a, b): a = a2} for all, a, b ∈ N, then R salifies.
Given a non-empty set X, define the relation R in P(X) as follows:
For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.
Read the following passage:
An organization conducted bike race under two different categories – Boys and Girls. There were 28 participants in all. Among all of them, finally three from category 1 and two from category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. |
Based on the above information, answer the following questions:
- How many relations are possible from B to G? (1)
- Among all the possible relations from B to G, how many functions can be formed from B to G? (1)
- Let R : B `rightarrow` B be defined by R = {(x, y) : x and y are students of the same sex}. Check if R is an equivalence relation. (2)
OR
A function f : B `rightarrow` G be defined by f = {(b1, g1), (b2, g2), (b3, g1)}. Check if f is bijective. Justify your answer. (2)