Advertisements
Advertisements
प्रश्न
Show that the relation R in the set R of real numbers, defined as R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.
उत्तर
(i) Reflexive:
R = {(a, b): a ≤ b2}
Let a ∈ R
a ≤ a2 which is false
(a, a) ∉ R
∴R is not reflexive.
(ii) Symmetric:
Let a, b ∈ R and (a, b) ∈ R
a ≤ b2 and b ≤ a2, which is false
(a, b) ∈ R, but (b, a) ∉ R
∴ R is not symmetric
(iii) Transitive:
Let a, b,c ∈ R
Consider (a, b) ∈ R, (b, c) ∈ R
a ≤ b2 and b ≤ c2
a≤ c2 is false
(a, c) ∉ R
∴ R is not transitive.
Hence, R is neither reflexive, nor symmetric, nor transitive.
APPEARS IN
संबंधित प्रश्न
Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.
If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.
Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.
Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.
The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:
R = {(x, y) : x is father of and y}
Three relations R1, R2 and R3 are defined on a set A = {a, b, c} as follows:
R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}
R2 = {(a, a)}
R3 = {(b, c)}
R4 = {(a, b), (b, c), (c, a)}.
Find whether or not each of the relations R1, R2, R3, R4 on A is (i) reflexive (ii) symmetric and (iii) transitive.
Test whether the following relation R1 is (i) reflexive (ii) symmetric and (iii) transitive :
R1 on Q0 defined by (a, b) ∈ R1 ⇔ a = 1/b.
Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.
An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.
Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?
Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.
Defines a relation on N:
x + 4y = 10, x, y ∈ N
Determine the above relation is reflexive, symmetric and transitive.
Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b}, is an equivalence relation.
Show that the relation R on the set A = {x ∈ Z ; 0 ≤ x ≤ 12}, given by R = {(a, b) : a = b}, is an equivalence relation. Find the set of all elements related to 1.
Define a transitive relation ?
The relation R defined on the set A = {1, 2, 3, 4, 5} by
R = {(a, b) : | a2 − b2 | < 16} is given by ______________ .
The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .
If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .
Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .
S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).
Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.
Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x ∈N, y ∈N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive
Let us define a relation R in R as aRb if a ≥ b. Then R is ______.
A relation R on a non – empty set A is an equivalence relation if it is ____________.
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Let R: B → B be defined by R = {(x, y): x and y are students of same sex}, Then this relation R is ____________.
Which one of the following relations on the set of real numbers R is an equivalence relation?
The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is
There are 600 student in a school. If 400 of them can speak Telugu, 300 can speak Hindi, then the number of students who can speak both Telugu and Hindi is:
Which of the following is/are example of symmetric
Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.
lf A = {x ∈ z+ : x < 10 and x is a multiple of 3 or 4}, where z+ is the set of positive integers, then the total number of symmetric relations on A is ______.
Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is ______.