हिंदी

Show that the Relation '≥' on the Set R of All Real Numbers is Reflexive and Transitive but Not Symmetric. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?

योग

उत्तर

 Let R be the set such that R = {(a, b) : ab ∈ Ra ≥ b}

Reflexivity :

Let a be an arbitrary element of R. 

⇒ a∈ R

⇒ a

⇒ ≥ a is true for a

⇒ (a, a∈ R

Hence, R is reflexive.

Symmetry :

Let (a, b∈ R

⇒ b is same as ≤ a, but not ≥ a

Thus, (b, a∉ R 

Hence, R is not symmetric .

Transitivity :

Let (a, b) and (b, c∈ R

≥ b and ≥ c

⇒ ≥ ≥ c

⇒ ≥ c

⇒ a, c∈ R

Hence, R is transitive .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations - Exercise 1.1 [पृष्ठ ११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 1 Relations
Exercise 1.1 | Q 13 | पृष्ठ ११

संबंधित प्रश्न

If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}


Check whether the relation R in R defined by R = {(a, b): a ≤ b3} is reflexive, symmetric, or transitive.


Given an example of a relation. Which is Transitive but neither reflexive nor symmetric.


Given an example of a relation. Which is Symmetric and transitive but not reflexive.


Let R be the relation in the set given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.


Let A = {x ∈ Z : 0 ≤ x ≤ 12}. Show that R = {(ab) : a∈ A, |a – b| is divisible by 4}is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]


Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:

R = {(x, y) : x is wife of y}


Give an example of a relation which is transitive but neither reflexive nor symmetric?


Given the relation R = {(1, 2), (2, 3)} on the set A = {1, 2, 3}, add a minimum number of ordered pairs so that the enlarged relation is symmeteric, transitive and reflexive.


Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.


Defines a relation on N :

xy is square of an integer, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


If R and S are relations on a set A, then prove that R and S are symmetric ⇒ R ∩ S and R ∪ S are symmetric ?


Write the smallest reflexive relation on set A = {1, 2, 3, 4}.


Define a symmetric relation ?


If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.


Let R be the equivalence relation on the set Z of the integers given by R = { (ab) : 2 divides }.

Write the equivalence class [0].


The relation R defined on the set A = {1, 2, 3, 4, 5} by
R = {(a, b) : | a2 − b2 | < 16} is given by ______________ .


If A = {a, b, c}, then the relation R = {(b, c)} on A is _______________ .


 If A = {a, b, c, d}, then a relation R = {(a, b), (b, a), (a, a)} on A is _____________ .


Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .


Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.


The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .


S is a relation over the set R of all real numbers and it is given by (a, b) ∈ S ⇔ ab ≥ 0. Then, S is _______________ .


If A = {a, b, c}, B = (x , y} find B × B.


Consider the set A = {1, 2, 3} and R be the smallest equivalence relation on A, then R = ______


The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ______.


If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.


Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is ____________.


Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.


Given set A = {a, b, c}. An identity relation in set A is ____________.


A relation S in the set of real numbers is defined as `"xSy" => "x" - "y" + sqrt3`  is an irrational number, then relation S is ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R ∶ B → B be defined by R = {(x, y): y is divisible by x} is ____________.

A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-


Which of the following is/are example of symmetric


If f(x + 2a) = f(x – 2a), then f(x) is:


lf A = {x ∈ z+ : x < 10 and x is a multiple of 3 or 4}, where z+ is the set of positive integers, then the total number of symmetric relations on A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×