हिंदी

Write the Smallest Reflexive Relation on Set a = {1, 2, 3, 4}. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the smallest reflexive relation on set A = {1, 2, 3, 4}.

एक पंक्ति में उत्तर
योग

उत्तर

Here,
A = {1, 2, 3, 4}
Also, a relation is reflexive iff every element of the set is related to itself.

So, the smallest reflexive relation on the set A is
R = {(1, 1), (2, 2), (3, 3), (4, 4)}

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations - Exercise 1.3 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 1 Relations
Exercise 1.3 | Q 4 | पृष्ठ ३०

संबंधित प्रश्न

If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}


Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.


Show that each of the relation R in the set A= {x  ∈ Z : 0 ≤ x  ≤ = 12} given by R = {(a, b) : |a - b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case.


Show that each of the relation R in the set A= {x ∈ Z : 0 ≤ x ≤ = 12} given by R = {(a,b) : a = b} is an equivalence relation. Find the set of all elements related to 1 in each case.


Given a non-empty set X, consider P (X), which is the set of all subsets of X. Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if A ⊂ B. Is R an equivalence relation on P(X)? Justify your answer.


Give an example of a relation which is reflexive and transitive but not symmetric ?


Show that the relation R defined by R = {(a, b) : a – b is divisible by 3; a, b ∈ Z} is an equivalence relation.


m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?


Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = yu. Show that R is an equivalence relation.


Let C be the set of all complex numbers and Cbe the set of all no-zero complex numbers. Let a relation R on Cbe defined as

`z_1 R  z_2  ⇔ (z_1 -z_2)/(z_1 + z_2) ` is real for all z1, z2 ∈ C0 .

Show that R is an equivalence relation.


Let A = {2, 3, 4, 5} and B = {1, 3, 4}. If R is the relation from A to B given by a R b if "a is a divisor of b". Write R as a set of ordered pairs.


The relation 'R' in N × N such that
(a, b) R (c, d) ⇔ a + d = b + c is ______________ .


A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .


Mark the correct alternative in the following question:

The relation S defined on the set R of all real number by the rule aSb if a  b is _______________ .


Mark the correct alternative in the following question:

Consider a non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then, R is _____________ .


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.


Let A = {a, b, c} and the relation R be defined on A as follows:
R = {(a, a), (b, c), (a, b)}.
Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive


The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


The following defines a relation on N:
x + y = 10, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.


If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.


Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ______.


Every relation which is symmetric and transitive is also reflexive.


If f(x) = `1 - 1/"x", "then f"("f"(1/"x"))` ____________.


Let us define a relation R in R as aRb if a ≥ b. Then R is ____________.


Let R be the relation “is congruent to” on the set of all triangles in a plane is ____________.


Total number of equivalence relations defined in the set S = {a, b, c} is ____________.


Given set A = {a, b, c}. An identity relation in set A is ____________.


If A is a finite set consisting of n elements, then the number of reflexive relations on A is


In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?


A market research group conducted a survey of 2000 consumers and reported that 1720 consumers like product P1 and 1450 consumers like product P2. What is the least number that must have liked both the products?


A relation in a set 'A' is known as empty relation:-


A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-


A relation 'R' in a set 'A' is called reflexive, if


Given a non-empty set X, define the relation R in P(X) as follows:

For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.


Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.


Let R1 and R2 be two relations defined as follows :

R1 = {(a, b) ∈ R2 : a2 + b2 ∈ Q} and

R2 = {(a, b) ∈ R2 : a2 + b2 ∉ Q}, where Q is the set of all rational numbers. Then ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×