हिंदी

The following defines a relation on N:x + y = 10, x, y ∈ NDetermine which of the above relations are reflexive, symmetric and transitive. - Mathematics

Advertisements
Advertisements

प्रश्न

The following defines a relation on N:
x + y = 10, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.

योग

उत्तर

x + y = 10; x, y ∈ N

Thus,

R = {(x, y); x + y = 10, x, y ∈ N}

R = {(1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1)}

It’s clear (1, 1) ∉ R

So, R is not reflexive.

(x, y) ∈ R ⇒ (y, x) ∈ R

Therefore, R is symmetric.

Now (1, 9) ∈ R, (9, 1) ∈ R, but (1, 1) ∉ R

Therefore, R is not transitive.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations And Functions - Exercise [पृष्ठ १२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 1 Relations And Functions
Exercise | Q 22. (ii) | पृष्ठ १२

संबंधित प्रश्न

Let A = {1, 2, 3,......, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)].


Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.


Given an example of a relation. Which is  Reflexive and symmetric but not transitive.


Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.


Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.


Show that the relation R on the set Z of integers, given by
R = {(a, b) : 2 divides a – b},  is an equivalence relation.


Let R be the relation defined on the set A = {1, 2, 3, 4, 5, 6, 7} by R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence relation. Further, show that all the elements of the subset {1, 3, 5, 7} are related to each other and all the elements of the subset {2, 4, 6} are related to each other, but no element of the subset {1, 3, 5, 7} is related to any element of the subset {2, 4, 6}.


Let R = {(x, y) : |x2 − y2| <1) be a relation on set A = {1, 2, 3, 4, 5}. Write R as a set of ordered pairs.


Define a symmetric relation ?


Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?


If a relation R is defined on the set Z of integers as follows:
(a, b) ∈ R ⇔ a2 + b2 = 25. Then, domain (R) is ___________


Let R be a relation on N defined by x + 2y = 8. The domain of R is _______________ .


If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .


Mark the correct alternative in the following question:

Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b for all a, b  T. Then, R is ____________ .


Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
symmetric but neither reflexive nor transitive


Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x ∈N, y ∈N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive


The following defines a relation on N:
x + 4y = 10 x, y ∈ N.
Determine which of the above relations are reflexive, symmetric and transitive.


Which of the following is not an equivalence relation on I, the set of integers: x, y


Let A = {1, 2, 3, 4, 5, 6} Which of the following partitions of A correspond to an equivalence relation on A?


Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.


Given triangles with sides T1: 3, 4, 5; T2: 5, 12, 13; T3: 6, 8, 10; T4: 4, 7, 9 and a relation R inset of triangles defined as R = `{(Delta_1, Delta_2) : Delta_1  "is similar to"  Delta_2}`. Which triangles belong to the same equivalence class?


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Let R: B → B be defined by R = {(x, y): x and y are students of same sex}, Then this relation R is ____________.

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let R = {(L1, L2 ): L1 is parallel to L2 and L1: y = x – 4} then which of the following can be taken as L2?

Find: `int (x + 1)/((x^2 + 1)x) dx`


In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?


Let R = {(x, y) : x, y ∈ N and x2 – 4xy + 3y2 = 0}, where N is the set of all natural numbers. Then the relation R is ______.


Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×