हिंदी

Let R Be the Relation Defined on the Set A = {1, 2, 3, 4, 5, 6, 7} By R = {(A, B) : Both A And B Are Either Odd Or Even}. Show That R Is an Equivalence Relation. Further, Show that All the Elements of - Mathematics

Advertisements
Advertisements

प्रश्न

Let R be the relation defined on the set A = {1, 2, 3, 4, 5, 6, 7} by R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence relation. Further, show that all the elements of the subset {1, 3, 5, 7} are related to each other and all the elements of the subset {2, 4, 6} are related to each other, but no element of the subset {1, 3, 5, 7} is related to any element of the subset {2, 4, 6}.

योग

उत्तर

We observe the following properties of R.

Reflexivity :

Let a be an arbitrary element of R. Then,

∈ R

⇒ (a, a∈ R for all ∈ A

So, R is reflexive on A.

Symmetry : Let (a, b∈ R

⇒ Both a and b are either even or odd.

⇒ Both b and a are either even or odd.

⇒ (b, a∈ R for all a, ∈ A

So, R is symmetric on A.

Transitivity : Let (a, b) and (b, c∈ R

⇒ Both a and b are either even or odd and both b and c are either even or odd.

⇒ a, b and c are either even or odd.

⇒ a and c both are either even or odd.

⇒ (a, c) ∈ R for all a, ∈ A

So, R is transitive on A.

Thus, R is an equivalence relation on A.

We observe that all the elements of the subset {1, 3, 5, 7} are odd. Thus, they are related to each other .

This is because the relation R on A is an equivalence relation.

Similarly, the elements of the subset {2, 4, 6} are even. Thus, they are related to each other because every element is even.

Hence proved .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations - Exercise 1.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 1 Relations
Exercise 1.2 | Q 12 | पृष्ठ २७

संबंधित प्रश्न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A of human beings in a town at a particular time given by (c) R = {(x, y): x is exactly 7 cm taller than y}


Given an example of a relation. Which is Symmetric and transitive but not reflexive.


Let A = {1, 2, 3}, and let R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 = {(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Find whether or not each of the relations R1, R2, R3 on A is (i) reflexive (ii) symmetric (iii) transitive.


The following relation is defined on the set of real numbers.  aRb if |a| ≤ b

Find whether relation is reflexive, symmetric or transitive.


Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.


Show that the relation '≥' on the set R of all real numbers is reflexive and transitive but not symmetric ?


Defines a relation on N:

x + 4y = 10, x, y ∈ N

Determine the above relation is reflexive, symmetric and transitive.


If R and S are relations on a set A, then prove that R is reflexive and S is any relation ⇒ R ∪ S is reflexive ?


Let R = {(x, y) : |x2 − y2| <1) be a relation on set A = {1, 2, 3, 4, 5}. Write R as a set of ordered pairs.


If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.


Let A = {3, 5, 7}, B = {2, 6, 10} and R be a relation from A to B defined by R = {(x, y) : x and y are relatively prime}. Then, write R and R−1.


Define a symmetric relation ?


A = {1, 2, 3, 4, 5, 6, 7, 8} and if R = {(xy) : y is one half of xxy ∈ A} is a relation on A, then write R as a set of ordered pairs.


For the set A = {1, 2, 3}, define a relation R on the set A as follows:
R = {(1, 1), (2, 2), (3, 3), (1, 3)}
Write the ordered pairs to be added to R to make the smallest equivalence relation.


Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?


If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .


A relation ϕ from C to R is defined by x ϕ y ⇔ | x | = y. Which one is correct?


If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .


If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .


Let A = {1, 2, 3}. Then, the number of equivalence relations containing (1, 2) is ______.


The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .


Mark the correct alternative in the following question:

The maximum number of equivalence relations on the set A = {1, 2, 3} is _______________ .


Mark the correct alternative in the following question:

For real numbers x and y, define xRy if `x-y+sqrt2` is an irrational number. Then the relation R is ___________ .


Show that the relation R on the set Z of all integers, given by R = {(a,b) : 2 divides (a-b)} is an equivalence relation.


R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.


Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.


Consider the set A = {1, 2, 3} and the relation R = {(1, 2), (1, 3)}. R is a transitive relation.


Give an example of a map which is neither one-one nor onto


Let A = {1, 2, 3} and consider the relation R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}. Then R is ______.


Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : |a2 – b2| < 8. Then R is given by ______.


Let A = {1, 2, 3}, then the relation R = {(1, 1), (1, 2), (2, 1)} on A is ____________.


Let A = {1, 2, 3, 4, 5, 6} Which of the following partitions of A correspond to an equivalence relation on A?


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Mr. Shyam exercised his voting right in General Election-2019, then Mr. Shyam is related to which of the following?

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let relation R be defined by R = {(L1, L2): L1║L2 where L1, L2 ∈ L} then R is ____________ relation.

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let R = {(L1, L2 ): L1 is parallel to L2 and L1: y = x – 4} then which of the following can be taken as L2?

Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].


Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×