English

Let R Be the Relation Defined on the Set A = {1, 2, 3, 4, 5, 6, 7} By R = {(A, B) : Both A And B Are Either Odd Or Even}. Show That R Is an Equivalence Relation. Further, Show that All the Elements of - Mathematics

Advertisements
Advertisements

Question

Let R be the relation defined on the set A = {1, 2, 3, 4, 5, 6, 7} by R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence relation. Further, show that all the elements of the subset {1, 3, 5, 7} are related to each other and all the elements of the subset {2, 4, 6} are related to each other, but no element of the subset {1, 3, 5, 7} is related to any element of the subset {2, 4, 6}.

Sum

Solution

We observe the following properties of R.

Reflexivity :

Let a be an arbitrary element of R. Then,

∈ R

⇒ (a, a∈ R for all ∈ A

So, R is reflexive on A.

Symmetry : Let (a, b∈ R

⇒ Both a and b are either even or odd.

⇒ Both b and a are either even or odd.

⇒ (b, a∈ R for all a, ∈ A

So, R is symmetric on A.

Transitivity : Let (a, b) and (b, c∈ R

⇒ Both a and b are either even or odd and both b and c are either even or odd.

⇒ a, b and c are either even or odd.

⇒ a and c both are either even or odd.

⇒ (a, c) ∈ R for all a, ∈ A

So, R is transitive on A.

Thus, R is an equivalence relation on A.

We observe that all the elements of the subset {1, 3, 5, 7} are odd. Thus, they are related to each other .

This is because the relation R on A is an equivalence relation.

Similarly, the elements of the subset {2, 4, 6} are even. Thus, they are related to each other because every element is even.

Hence proved .

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations - Exercise 1.2 [Page 27]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 1 Relations
Exercise 1.2 | Q 12 | Page 27

RELATED QUESTIONS

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}


Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = {(a, b) : |a - b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.


Given an example of a relation. Which is Symmetric but neither reflexive nor transitive.


Show that the relation R defined in the set A of all polygons as R = {(P1P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?


Let R be the relation in the set given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.


The following relation is defined on the set of real numbers.
aRb if a – b > 0

Find whether relation is reflexive, symmetric or transitive.


If R is a symmetric relation on a set A, then write a relation between R and R−1.


Define an equivalence relation ?


Write the smallest equivalence relation on the set A = {1, 2, 3} ?


If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .


The relation R = {(1, 1), (2, 2), (3, 3)} on the set {1, 2, 3} is ___________________ .


Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c   on the A x A  , where A =  {1, 2,3,...,10}  is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).


Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.


Let A = {a, b, c} and the relation R be defined on A as follows:
R = {(a, a), (b, c), (a, b)}.
Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
reflexive, symmetric and transitive


Let R be relation defined on the set of natural number N as follows:
R = {(x, y): x ∈N, y ∈N, 2x + y = 41}. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive


Give an example of a map which is one-one but not onto


Give an example of a map which is not one-one but onto


Give an example of a map which is neither one-one nor onto


The maximum number of equivalence relations on the set A = {1, 2, 3} are ______.


Let R be the relation on N defined as by x + 2 y = 8 The domain of R is ____________.


Total number of equivalence relations defined in the set S = {a, b, c} is ____________.


Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R ∶ B → B be defined by R = {(x, y): y is divisible by x} is ____________.

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin’s sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

A = {S, D}, B = {1,2,3,4,5,6}

  • Let R be a relation on B defined by R = {(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)}. Then R is:

An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wishes to form all the relations possible from B to G. How many such relations are possible?

The value of k for which the system of equations x + ky + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 has nontrivial solution is


In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?


The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is


There are 600 student in a school. If 400 of them can speak Telugu, 300 can speak Hindi, then the number of students who can speak both Telugu and Hindi is:


A market research group conducted a survey of 2000 consumers and reported that 1720 consumers like product P1 and 1450 consumers like product P2. What is the least number that must have liked both the products?


A relation 'R' in a set 'A' is called a universal relation, if each element of' A' is related to :-


Given a non-empty set X, define the relation R in P(X) as follows:

For A, B ∈ P(X), (4, B) ∈ R iff A ⊂ B. Prove that R is reflexive, transitive and not symmetric.


Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.


lf A = {x ∈ z+ : x < 10 and x is a multiple of 3 or 4}, where z+ is the set of positive integers, then the total number of symmetric relations on A is ______.


Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.


Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is ______.


If a relation R on the set {a, b, c} defined by R = {(b, b)}, then classify the relation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×