हिंदी

Determination of whether the following relations are reflexive, symmetric, and transitive: Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x} - Mathematics

Advertisements
Advertisements

प्रश्न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y): y is divisible by x}

योग

उत्तर

A = {1, 2, 3, 4, 5, 6}

R = {(x, y): y is divisible by x}

We know that any number (x) is divisible by itself.

=> (x, x) ∈R

∴R is reflexive.

Now,

(2, 4) ∈R [as 4 is divisible by 2]

But,

(4, 2) ∉ R. [as 2 is not divisible by 4]

∴R is not symmetric.

Let (x, y), (y, z) ∈ R. Then, y is divisible by x and z is divisible by y.

∴z is divisible by x.

⇒ (x, z) ∈R

∴R is transitive.

Hence, R is reflexive and transitive but not symmetric.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations and Functions - Exercise 1.1 [पृष्ठ ५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 1 Relations and Functions
Exercise 1.1 | Q 1.3 | पृष्ठ ५

संबंधित प्रश्न

determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set  A  = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}


Let R be the relation in the set given by R = {(a, b): a = b − 2, b > 6}. Choose the correct answer.


The following relation is defined on the set of real numbers.
aRb if a – b > 0

Find whether relation is reflexive, symmetric or transitive.


m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?


Let O be the origin. We define a relation between two points P and Q in a plane if OP = OQ. Show that the relation, so defined is an equivalence relation.


State the reason for the relation R on the set {1, 2, 3} given by R = {(1, 2), (2, 1)} to be transitive ?


Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .


Let R = {(a, a), (b, b), (c, c), (a, b)} be a relation on set A = a, b, c. Then, R is _______________ .


If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .


 If A = {a, b, c, d}, then a relation R = {(a, b), (b, a), (a, a)} on A is _____________ .


If A = {1, 2, 3}, then a relation R = {(2, 3)} on A is _____________ .


Mark the correct alternative in the following question:

The relation S defined on the set R of all real number by the rule aSb if a  b is _______________ .


Mark the correct alternative in the following question:

Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then, R is _____________ .


Show that the relation R on the set Z of integers, given by R = {(a,b):2divides (a - b)} is an equivalence relation. 


If f (x)  = `(4x + 3)/(6x - 4) , x ≠ 2/3`, show that fof (x) = x for all ` x ≠ 2/3` . Also, find the inverse of f.


Show that the relation R on the set Z of all integers, given by R = {(a,b) : 2 divides (a-b)} is an equivalence relation.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6} Find (A × B) ∩ (A × C).


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∪ C).


Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.


Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
reflexive, symmetric and transitive


Give an example of a map which is one-one but not onto


The following defines a relation on N:
x is greater than y, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


The following defines a relation on N:
x + y = 10, x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.


Let A = {1, 2, 3} and R = {(1, 2), (2, 3), (1, 3)} be a relation on A. Then, R is ____________.


Let A = {1, 2, 3, 4, 5, 6} Which of the following partitions of A correspond to an equivalence relation on A?


Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.


Let A = {x : -1 ≤ x ≤ 1} and f : A → A is a function defined by f(x) = x |x| then f is ____________.


A relation R in set A = {1, 2, 3} is defined as R = {(1, 1), (1, 2), (2, 2), (3, 3)}. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?


The value of k for which the system of equations x + ky + 3z = 0, 4x + 3y + kz = 0, 2x + y + 2z = 0 has nontrivial solution is


The relation > (greater than) on the set of real numbers is


The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is


A relation in a set 'A' is known as empty relation:-


Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.


Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×