हिंदी

If a = {A, B, C, D}, Then a Relation R = {(A, B), (B, A), (A, A)} on a is (A) Symmetric and Transitive Only (B) Reflexive and Transitive Only (C) Symmetric Only (D) Transitive Only - Mathematics

Advertisements
Advertisements

प्रश्न

 If A = {a, b, c, d}, then a relation R = {(a, b), (b, a), (a, a)} on A is _____________ .

विकल्प

  • symmetric and transitive only

  • reflexive and transitive only

  • symmetric only

  • transitive only

MCQ

उत्तर

symmetric and transitive only

Reflexivity: Since (b, b) R, R is not reflexive on A.

Symmetry: Since (a, b) R and (b, a) R, R is symmetric on A.

Transitivity: Since (a, b) R,  (b, a) R and (a, a) R, R is transitive on A

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations - Exercise 1.4 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 1 Relations
Exercise 1.4 | Q 20 | पृष्ठ ३२

संबंधित प्रश्न

Let A = {1, 2, 3,......, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)].


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set Z of all integers defined as
R = {(x, y): x − y is an integer}


Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a + 1} is reflexive, symmetric, or transitive.


Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.


An integer m is said to be related to another integer n if m is a multiple of n. Check if the relation is symmetric, reflexive and transitive.


Give an example of a relation which is transitive but neither reflexive nor symmetric?


Defines a relation on :

x + y = 10, xy∈ N

Determine the above relation is reflexive, symmetric and transitive.


m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?


If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.


If R is a symmetric relation on a set A, then write a relation between R and R−1.


Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs


Let A = {2, 3, 4, 5, ..., 17, 18}. Let '≃' be the equivalence relation on A × A, cartesian product of Awith itself, defined by (a, b) ≃ (c, d) if ad = bc. Then, the number of ordered pairs of the equivalence class of (3, 2) is _______________ .


Let R be the relation on the set A = {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Then, _____________________ .


Mark the correct alternative in the following question:

Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then, R is _______________ .


Show that the relation R on the set Z of integers, given by R = {(a,b):2divides (a - b)} is an equivalence relation. 


Show that the relation R on the set Z of all integers, given by R = {(a,b) : 2 divides (a-b)} is an equivalence relation.


Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.


Show that the relation R defined by (a, b)R(c,d) ⇒ a + d = b + c   on the A x A  , where A =  {1, 2,3,...,10}  is an equivalence relation. Hence write the equivalence class [(3, 4)]; a, b, c,d ∈ A.


If A = {a, b, c}, B = (x , y} find A × B.


If A = {a, b, c}, B = (x , y} find B × A.


If A = {a, b, c}, B = (x , y} find B × B.


Let Z be the set of integers and R be the relation defined in Z such that aRb if a – b is divisible by 3. Then R partitions the set Z into ______ pairwise disjoint subsets


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
reflexive, symmetric and transitive


The following defines a relation on N:
x y is square of an integer x, y ∈ N
Determine which of the above relations are reflexive, symmetric and transitive.


Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.


If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is ______.


Let us define a relation R in R as aRb if a ≥ b. Then R is ______.


Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ______.


Let A = { 2, 3, 6 } Which of the following relations on A are reflexive?


Let `"f"("x") = ("x" - 1)/("x" + 1),` then f(f(x)) is ____________.


Let A = {1, 2, 3, …. n} and B = {a, b}. Then the number of surjections from A into B is ____________.


Let R be a relation on the set N of natural numbers denoted by nRm ⇔ n is a factor of m (i.e. n | m). Then, R is ____________.


Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wishes to form all the relations possible from B to G. How many such relations are possible?

Find: `int (x + 1)/((x^2 + 1)x) dx`


A relation 'R' in a set 'A' is called reflexive, if


Which of the following is/are example of symmetric


Define the relation R in the set N × N as follows:

For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×