Advertisements
Advertisements
प्रश्न
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is ______.
विकल्प
Reflexive but not transitive
Transitive but not symmetric
Equivalence
None of these
उत्तर
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b ∀ a, b ∈ T. Then R is equivalence.
Explanation:
Given aRb, if a is congruent to b, ∀ a, b ∈ T.
Then, we have aRa ⇒ a is congruent to a; which is always true.
So, R is reflexive.
Let aRb ⇒ a ~ b
b ~ a
bRa
So, R is symmetric.
Let aRb and bRc
a ~ b and b ~ c
a ~ c
aRc
So, R is transitive.
Therefore, R is equivalence relation.
APPEARS IN
संबंधित प्रश्न
Let A = {1, 2, 3,......, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for (a, b), (c, d) in A × A. Prove that R is an equivalence relation. Also, obtain the equivalence class [(2, 5)].
Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R = {(a, b) : |a - b| is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
Given an example of a relation. Which is Reflexive and transitive but not symmetric.
Show that the relation R defined in the set A of all polygons as R = {(P1, P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?
Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
Give an example of a relation which is symmetric and transitive but not reflexive?
Give an example of a relation which is transitive but neither reflexive nor symmetric?
Let A = {1, 2, 3} and R = {(1, 2), (1, 1), (2, 3)} be a relation on A. What minimum number of ordered pairs may be added to R so that it may become a transitive relation on A.
Let A = {a, b, c} and the relation R be defined on A as follows: R = {(a, a), (b, c), (a, b)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.
Prove that the relation R on Z defined by
(a, b) ∈ R ⇔ a − b is divisible by 5
is an equivalence relation on Z.
If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.
Let R = {(x, y) : |x2 − y2| <1) be a relation on set A = {1, 2, 3, 4, 5}. Write R as a set of ordered pairs.
If A = {3, 5, 7} and B = {2, 4, 9} and R is a relation given by "is less than", write R as a set ordered pairs.
Let A = {0, 1, 2, 3} and R be a relation on A defined as
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
Is R reflexive? symmetric? transitive?
Let the relation R be defined on the set A = {1, 2, 3, 4, 5} by R = {(a, b) : | a2- b2 | < 8}. Write R as a set of ordered pairs.
A relation R is defined from {2, 3, 4, 5} to {3, 6, 7, 10} by : x R y ⇔ x is relatively prime to y. Then, domain of R is ______________ .
If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .
Show that the relation R on the set Z of all integers, given by R = {(a,b) : 2 divides (a-b)} is an equivalence relation.
Show that the relation R on R defined as R = {(a, b): a ≤ b}, is reflexive, and transitive but not symmetric.
Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).
Let A = {0, 1, 2, 3} and define a relation R on A as follows: R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}. Is R reflexive? symmetric? transitive?
Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is ______.
Consider the set A = {1, 2, 3} and R be the smallest equivalence relation on A, then R = ______
Let n be a fixed positive integer. Define a relation R in Z as follows: ∀ a, b ∈ Z, aRb if and only if a – b is divisible by n. Show that R is an equivalance relation
Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ______.
Let S = {1, 2, 3, 4, 5} and let A = S x S. Define the relation R on A as follows:
(a, b) R (c, d) iff ad = cb. Then, R is ____________.
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- Let relation R be defined by R = {(L1, L2): L1║L2 where L1, L2 ∈ L} then R is ____________ relation.
The relation R = {(1,1),(2,2),(3,3)} on {1,2,3} is ____________.
Read the following passage:
An organization conducted bike race under two different categories – Boys and Girls. There were 28 participants in all. Among all of them, finally three from category 1 and two from category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. |
Based on the above information, answer the following questions:
- How many relations are possible from B to G? (1)
- Among all the possible relations from B to G, how many functions can be formed from B to G? (1)
- Let R : B `rightarrow` B be defined by R = {(x, y) : x and y are students of the same sex}. Check if R is an equivalence relation. (2)
OR
A function f : B `rightarrow` G be defined by f = {(b1, g1), (b2, g2), (b3, g1)}. Check if f is bijective. Justify your answer. (2)