Advertisements
Advertisements
प्रश्न
Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.
विकल्प
Commutative but not associative
Associative but not commutative
Neither commutative nor associative
Both commutative and associative
उत्तर
Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is commutative but not associative.
Explanation:
Given that * is a binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R
So, we have a * b = ab + 1 = b * a
So, * is a commutative binary operation.
Now, a * (b * c) = a * (1 + bc) = 1 + a(1 + bc) = 1 + a + abc
Also,
(a * b) * c = (1 + ab) * c = 1 + (1 + ab)c = 1 + c + abc
Thus, a * (b * c) ≠ (a * b) * c
Hence, * is not associative.
Therefore, * is commutative but not associative.
APPEARS IN
संबंधित प्रश्न
Determine whether or not of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.
On Z+, define ∗ by a ∗ b = a – b
Find which of the operations given above has identity.
State whether the following statements are true or false. Justify.
If * is a commutative binary operation on N, then a * (b * c) = (c * b) * a
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b
Here, Z+ denotes the set of all non-negative integers.
Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.
Determine which of the following binary operation is associative and which is commutative : * on N defined by a * b = 1 for all a, b ∈ N ?
Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?
Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all a, b ∈ Q ?
On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that '*' is both commutative and associative on Q − {−1}.
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :
Find the identity element in Q0.
Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.
Write the total number of binary operations on a set consisting of two elements.
Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.
Subtraction of integers is ___________________ .
An operation * is defined on the set Z of non-zero integers by \[a * b = \frac{a}{b}\] for all a, b ∈ Z. Then the property satisfied is _______________ .
The number of binary operation that can be defined on a set of 2 elements is _________ .
The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .
On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?
Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M
Let A be Q\{1}. Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the existence of an identity, the existence of inverse properties for the operation * on A
Choose the correct alternative:
Subtraction is not a binary operation in
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a + ab ∀ a, b ∈ Q
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = (a – b)2 ∀ a, b ∈ Q
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.
The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA "a, b" in "Q" - {0}` is ____________.