Advertisements
Advertisements
प्रश्न
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a + ab ∀ a, b ∈ Q
उत्तर
Given that * is a binary operation defined on Q.
a * b = a + ab
b * a = b + ab
So clearly, a + ab ≠ b + ab
Thus, * is not commutative.
APPEARS IN
संबंधित प्रश्न
Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) = (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.
(iii)and hence write the inverse of elements (5, 3) and (1/2,4)
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = 2ab
Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = a + b - 2 for all a, b ∈ N
The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.
Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all a, b ∈ Z ?
Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?
Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a + b − ab for all a, b ∈ Z ?
Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?
On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?
Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the invertible element in A ?
Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.
Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.
For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.
For the binary operation multiplication modulo 10 (×10) defined on the set S = {1, 3, 7, 9}, write the inverse of 3.
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .
Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?
Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`
Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.
Choose the correct alternative:
In the set Q define a ⨀ b = a + b + ab. For what value of y, 3 ⨀ (y ⨀ 5) = 7?
The identity element for the binary operation * defined on Q ~ {0} as a * b = `"ab"/2` ∀ a, b ∈ Q ~ {0} is ______.
If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then" 3 "*" (1/5 "*" 1/2)` is equal to ____________.
Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.
Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.
The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA "a, b" in "Q" - {0}` is ____________.