Advertisements
Advertisements
प्रश्न
Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A
उत्तर
Let A = `"a" + sqrt(5) "b"` and B = `"C" + sqrt(5)"d"`
Where a, b, c, d ∈ M.
Now A * B = `("a" + sqrt(5)"b")("c" + sqrt(5)"b")`
= `"ac" + sqrt(5)"ad" + sqrt(5)"bc" + sqrt(5)"b" sqrt(5)"d"`
= (ac + 5bd) + `sqrt(5)`(ad+ bc) ∈ A
Where a, b, c, d ∈ Z
So * is a binary operation.
APPEARS IN
संबंधित प्रश्न
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = ab
Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find
(i) 5 * 7, 20 * 16
(ii) Is * commutative?
(iii) Is * associative?
(iv) Find the identity of * in N
(v) Which elements of N are invertible for the operation *?
Number of binary operations on the set {a, b} are
(A) 10
(B) 16
(C) 20
(D) 8
Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4.
Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.
On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:
Find the invertible elements of Q0 ?
Let A \[=\] R \[\times\] R and \[*\] be a binary operation on A defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.
For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.
Find the inverse of 5 under multiplication modulo 11 on Z11.
Consider the binary operation 'o' defined by the following tables on set S = {a, b, c, d}.
o | a | b | c | d |
a | a | a | a | a |
b | a | b | c | d |
c | a | c | d | b |
d | a | d | b | c |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.
For the binary operation multiplication modulo 5 (×5) defined on the set S = {1, 2, 3, 4}. Write the value of \[\left( 3 \times_5 4^{- 1} \right)^{- 1}.\]
Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .
Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?
Determine whether * is a binary operation on the sets-given below.
a * b – a.|b| on R
On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?
Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:
* | a | b | c | d |
a | a | c | b | d |
b | d | a | b | c |
c | c | d | a | a |
d | d | b | a | c |
Is it commutative and associative?