हिंदी

Let * Be a Binary Operation on Q+ Defined by a ∗ B = a B 100 for All A, B ∈ Q + the Inverse of 0.1 is - Mathematics

Advertisements
Advertisements

प्रश्न

Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .

विकल्प

  • 105

  • 104

  • 106

  • none of these

MCQ

उत्तर

105
Let e be the identity element in Q+with respect to * such that

\[a * e = a = e * a, \forall a \in Q^+ \]
\[a * e = a \text{ &}e * a = a, \forall a \in Q^+ \]
\[\frac{ae}{100} = a \text{ & }\frac{ea}{100} = a, \forall a \in Q^+ \]
\[e = 100 , \forall a \in Q^+\]

Thus, 100 is the identity element in Q+ with respect to *. 

\[\text{ Let } b \in Q^+\text{ be the inverse of 0.1.Then }, \]
\[0.1 * b = e = b * 0 . 1\]
\[0 . 1 * b = e \text{ and }b * 0 . 1 = e\]
\[\frac{0 . 1b}{100} = 100 \text{ and }\frac{b\left( 0 . 1 \right)}{100} = 100\]
\[b = \frac{100 \times 100}{0 . 1}\]
\[ = {10}^5 \in Q^+ \]
\[\text{ Thus }, {10}^5 \text{ is the inverse of } 0 . 1 . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Binary Operations - Exercise 3.7 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 3 Binary Operations
Exercise 3.7 | Q 21 | पृष्ठ ३८

संबंधित प्रश्न

Determine whether or not of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.

On Z+, define ∗ by a ∗ b = a – b


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On R, define * by ab2


For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define a * b  = `(ab)/2`


Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by = min {ab}. Write the operation table of the operation∨.


State whether the following statements are true or false. Justify.

If * is a commutative binary operation on N, then * (c) = (b) * a


Given a non-empty set X, let *: P(X) × P(X) → P(X) be defined as A * B = (A − B) ∪ (B −A), &mnForE; AB ∈ P(X). Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with A−1 = A. (Hint: (A − Φ) ∪ (Φ − A) = Aand (A − A) ∪ (A − A) = A * A = Φ).


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b

Here, Z+ denotes the set of all non-negative integers.


Let S = {abc}. Find the total number of binary operations on S.


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all ab ∈ Q ?


On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that '*' is both commutative and associative on Q − {−1}.


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :

 Find the identity element in Q0.


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Show that '*' is both commutative and associative on A ?


Let A  \[=\] R  \[\times\] R and \[*\]  be a binary operation on defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.


Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.


For the binary operation ×10 on set S = {1, 3, 7, 9}, find the inverse of 3.


Define an associative binary operation on a set.


If G is the set of all matrices of the form

\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .


Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all ab ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .


An operation * is defined on the set Z of non-zero integers by \[a * b = \frac{a}{b}\]  for all ab ∈ Z. Then the property satisfied is _______________ .


For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .


For the multiplication of matrices as a binary operation on the set of all matrices of the form \[\begin{bmatrix}a & b \\ - b & a\end{bmatrix}\] a, b ∈ R the inverse of \[\begin{bmatrix}2 & 3 \\ - 3 & 2\end{bmatrix}\] is ___________________ .


The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .


Let A = ℝ × ℝ and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ ℝ × ℝ.
(i) Show that * is commutative on A.
(ii) Show that * is associative on A.
(iii) Find the identity element of * in A.


If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *


Let * be an operation defined as *: R × R ⟶ R, a * b = 2a + b, a, b ∈ R. Check if * is a binary operation. If yes, find if it is associative too.


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A ∧ B) v C


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is  ____________.


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.


A binary operation A × A → is said to be associative if:-


a * b = `((a + b))/2` ∀a, b ∈ N is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×