हिंदी

Let a = ℝ × ℝ and Let * Be a Binary Operation on a Defined by (A, B) * (C, D) = (Ad + Bc, Bd) for All (A, B), (C, D) ∈ ℝ × ℝ. (I) Show that * is Commutative on A. - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = ℝ × ℝ and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ ℝ × ℝ.
(i) Show that * is commutative on A.
(ii) Show that * is associative on A.
(iii) Find the identity element of * in A.

उत्तर

(i) For (ab), (cd) ∈ ℝ × ℝ, we have 

\[\left( a, b \right) * \left( c, d \right) = \left( ad + bc, bd \right)\] 
\[= \left( cb + da, db \right)\left[ \because \text { Addition  and  multiplication  are  commutative } \right]\] 
\[= \left( c, d \right) * \left( a, b \right)\]
So, * is commutative on A.
(ii)
For any (ab), (cd), (ef) ∈ A, we have

\[\left\{ \left( a, b \right) * \left( c, d \right) \right\} * \left( e, f \right) = \left( ad + bc, bd \right) * \left( e, f \right)\]

\[ = \left( \left( ad + bc \right)f + \left( bd \right)e, \left( bd \right)f \right)\]

\[ = \left( adf + bcf + bde, bdf \right) . . . . . (i)\]

And,

\[\left( a, b \right) * \left\{ \left( c, d \right) * \left( e, f \right) \right\} = \left( a, b \right) * \left( cf + de, df \right)\]

\[ = \left( a\left( df \right) + b\left( cf + de \right), b\left( df \right) \right)\]

\[ = \left( adf + bcf + bde, bdf \right) . . . . . (ii)\]

From (i) and (ii), we get

\[\left\{ \left( a, b \right) * \left( c, d \right) \right\} * \left( e, f \right) = \left( a, b \right) * \left\{ \left( c, d \right) * \left( e, f \right) \right\} for all \left( a, b \right), \left( c, d \right), \left( e, f \right) \in \mathbb{R} \times \mathbb{R} = A\]

So, * is associative on A.
(iii)
Let (xy) be the identity element in A, Then,

\[\left( a, b \right) * \left( x, y \right) = \left( a, b \right) \text { for all a, b  }\in \mathbb{R}\]

\[ \Rightarrow \left( ay + bx, by \right) = \left( a, b \right) \text { for all a, b } \in \mathbb{R}\]

\[ \Rightarrow ay + bx =\text {  a and by = b for all a, b } \in \mathbb{R}\]

\[ \Rightarrow x = 0, y = 1\]

But, 0 ∉ ℝ.
Therefore, (0, 1) ∉ ℝ × ℝ = A.
Hence there is no identity element in A with respect to binary operation * on A.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Foreign Set 3

संबंधित प्रश्न

Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.


Let A = × and * be the binary operation on A defined by  (ab) * (cd) = (cd)

Show that * is commutative and associative. Find the identity element for * on A, if any.


Consider the binary operations*: ×→ and o: R × R → defined as a * b = |a - b| and ab = a, &mnForE;ab ∈ R. Show that * is commutative but not associative, o is associative but not commutative. Further, show that &mnForE;abc ∈ Ra*(b o c) = (ab) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.


Given a non-empty set X, let *: P(X) × P(X) → P(X) be defined as A * B = (A − B) ∪ (B −A), &mnForE; AB ∈ P(X). Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with A−1 = A. (Hint: (A − Φ) ∪ (Φ − A) = Aand (A − A) ∪ (A − A) = A * A = Φ).


Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not :

\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\] 
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]


Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?


Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?


Let S be the set of all real numbers except −1 and let '*' be an operation defined by a * b = a + b + ab for all ab ∈ S. Determine whether '*' is a binary operation on S. If yes, check its commutativity and associativity. Also, solve the equation (2 * x) * 3 = 7.


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Show that '⊙' is commutative and associative on A ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :

 Find the identity element in Q0.


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by  \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:

Find the invertible elements of Q0 ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the invertible element in A ?


Let A  \[=\] R  \[\times\] R and \[*\]  be a binary operation on defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.


Construct the composition table for ×4 on set S = {0, 1, 2, 3}.


For the binary operation ×7 on the set S = {1, 2, 3, 4, 5, 6}, compute 3−1 ×7 4.


Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.


Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .


Determine whether * is a binary operation on the sets-given below.

a * b – a.|b| on R


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b + ab for a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a + ab ∀ a, b ∈ Q


Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.


If * is a binary operation on the set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5.


Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.


A binary operation A × A → is said to be associative if:-


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×