Advertisements
Advertisements
प्रश्न
Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.
उत्तर
We have a*b = a + b + ab for all a, b ∈ A, where A = R – { – 1}
Commutativity: For any a, b ∈ R – { – 1}
To prove: a*b = b*a
Now, a*b = a + b + ab .....(1)
b*a = b + a + ab .....(2)
From (1) and (2), we get
a*b = b*a
Hence, * is commutative.
Associative: For any a, b, c ∈ R – { – 1}
To prove: a*(b*c) = (a*b)*c
a*(b*c) = a*(b + c +bc)
= a + (b + c + bc) + a(b + c + bc)
= a + b + c + ab + ac + bc + abc .....(3)
(a*b)*c = (a + b + ab)*c
= a + b + ab + c + (a + b + ab)c
= a + b + c + ab + bc + ca + abc .....(4)
From (3) and (4), we have
a*(b*c) = (a*b)*c
Hence, a*b is associative.
Identity element:
Let e be the identity element. Then,
a*e = e*a = a
a*e = a + e + ae = a
e(1 + a) = 0
Therefore, e = 0 [∵ a ≠ – 1]
Hence, the identity element for* is e = 0.
Existence of inverse: Let a = R – { – 1} and b be the inverse of a.
Then, a * b = e = b * a
⇒a*b = e⇒a + b + ab = 0⇒b= `−a/(a+1)`
Since,
a∈R−(−1)
∴a≠−1
⇒a+1≠0
`⇒b=−a/(a+1)∈R`
Also, `−a/(a+1)` =−1⇒−a = −a−1⇒−1=0, which is not possible.
Hence, ` −a/(a+1)∈R−(−1)`
So, every element of R – { – 1} is invertible and the inverse of an element a is `−a/(a+1).`
APPEARS IN
संबंधित प्रश्न
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = a
Let A = N × N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d)
Show that * is commutative and associative. Find the identity element for * on A, if any.
Consider a binary operation * on N defined as a * b = a3 + b3. Choose the correct answer.
(A) Is * both associative and commutative?
(B) Is * commutative but not associative?
(C) Is * associative but not commutative?
(D) Is * neither commutative nor associative?
Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.
Determine whether the following operation define a binary operation on the given set or not :
\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, define * by a * b = a
Here, Z+ denotes the set of all non-negative integers.
Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N
Check the commutativity and associativity of '*' on N.
Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?
Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:
Prove that * is a binary operation on S ?
Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:
Prove that * is commutative as well as associative ?
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:
Find the invertible elements of Q0 ?
On R − {1}, a binary operation * is defined by a * b = a + b − ab. Prove that * is commutative and associative. Find the identity element for * on R − {1}. Also, prove that every element of R − {1} is invertible.
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Show that '*' is both commutative and associative on A ?
Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .
The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .
If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *
Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A ∧ B) v C
Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M
Choose the correct alternative:
Which one of the following is a binary operation on N?
Choose the correct alternative:
In the set Q define a ⨀ b = a + b + ab. For what value of y, 3 ⨀ (y ⨀ 5) = 7?
Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?
Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.
Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.
If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then" 3 "*" (1/5 "*" 1/2)` is equal to ____________.
Let * be a binary operation on set Q – {1} defind by a * b = a + b – ab : a, b ∈ Q – {1}. Then * is ____________.
Determine which of the following binary operation on the Set N are associate and commutaive both.