हिंदी

Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.

उत्तर

We have ​a*b = a + b + ab for all a, b ∈ A, where A = R – { – 1}
Commutativity: For any a, b ∈ R – { – 1}
To prove: a*b = b*a  
Now, a*b = a + b + ab               .....(1)
b*a = b + a + ab                        .....(2)
From (1) and (2), we get
a*b = b*a 
Hence, * is commutative.

Associative: For any a, b, c ∈ R – { – 1}
To prove: a*(b*c) = (a*b)*c
a*(b*c) = a*(b + c +bc)
             = a + (b + c + bc) + a(b + c + bc)
             = a + b + c + ab + ac + bc + abc           .....(3)
(a*b)*c = (a + b + ab)*c
             = a + b + ab + c + (a + b + ab)c
             = a + b + c + ab + bc + ca + abc            .....(4)
From (3) and (4), we have
a*(b*c) = (a*b)*c
Hence, a*b is associative.

Identity element:
Let e be the identity element. Then,
a*e = e*a = a
a*e = a + e + ae = a
e(1 + a) = 0
Therefore, e = 0            [∵ a ≠ – 1]
Hence, the identity element for* is e = 0.

Existence of inverse: Let a = R – { – 1} and b be the inverse of a. 
Then, a * b = e = b * a
a*b = ea + b + ab = 0b= `−a/(a+1)`


Since,

aR(1)

a1

a+10

`⇒b=−a/(a+1)∈R`

Also, `−a/(a+1)` =1a = a11=0, which is not possible.

Hence, ` −a/(a+1)∈R−(−1)`

So, every element of R – { – 1} is invertible and the inverse of an element a is `−a/(a+1).`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) All India Set 2 C

संबंधित प्रश्न

Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by a


Let A = × and * be the binary operation on A defined by  (ab) * (cd) = (cd)

Show that * is commutative and associative. Find the identity element for * on A, if any.


Consider a binary operation * on defined as a3 + b3. Choose the correct answer.

(A) Is * both associative and commutative?

(B) Is * commutative but not associative?

(C) Is * associative but not commutative?

(D) Is * neither commutative nor associative?


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.


Determine whether the following operation define a binary operation on the given set or not :

\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

 On Z+, define * by a * b = a

Here, Z+ denotes the set of all non-negative integers.


Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N

Check the commutativity and associativity of '*' on N.


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is a binary operation on S ?


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is commutative as well as associative ?


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by  \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\]:

Find the invertible elements of Q0 ?


On R − {1}, a binary operation * is defined by a * b = a + b − ab. Prove that * is commutative and associative. Find the identity element for * on R − {1}. Also, prove that every element of R − {1} is invertible.


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Show that '*' is both commutative and associative on A ?


Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


If a * b denote the bigger among a and b and if a ⋅ b = (a * b) + 3, then 4.7 = __________ .


The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .


If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *


Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A ∧ B) v C


Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M


Choose the correct alternative:

Which one of the following is a binary operation on N?


Choose the correct alternative:

In the set Q define a ⨀ b = a + b + ab. For what value of y, 3 ⨀ (y ⨀ 5) = 7?


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.


Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.


If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then"  3 "*" (1/5 "*" 1/2)` is equal to ____________.


Let * be a binary operation on set Q – {1} defind by a * b = a + b – ab : a, b ∈ Q – {1}. Then * is ____________.


Determine which of the following binary operation on the Set N are associate and commutaive both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×