हिंदी

Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.

रिक्त स्थान भरें

उत्तर

Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is 0 is the identity element with respect to the binary operation *.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations And Functions - Solved Examples [पृष्ठ १०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 1 Relations And Functions
Solved Examples | Q 29 | पृष्ठ १०

संबंधित प्रश्न

For each binary operation * defined below, determine whether * is commutative or associative.

On Z, define − b


Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.

(i) Compute (2 * 3) * 4 and 2 * (3 * 4)

(ii) Is * commutative?

(iii) Compute (2 * 3) * (4 * 5).

(Hint: use the following table)

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


Check the commutativity and associativity of the following binary operation '*' on N, defined by a * b = ab for all ab ∈ N ?


Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?


Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?


On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?


Define identity element for a binary operation defined on a set.


Let * be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N. Write the value of 22 * 4.


Q+ denote the set of all positive rational numbers. If the binary operation a ⊙ on Q+ is defined as \[a \odot = \frac{ab}{2}\] ,then the inverse of 3 is __________ .


A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .


Let * be a binary operation on N defined by a * b = a + b + 10 for all ab ∈ N. The identity element for * in N is _____________ .


On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .


The number of binary operation that can be defined on a set of 2 elements is _________ .


Consider the binary operation * defined by the following tables on set S = {a, bcd}.

a b c  d
a a b c d
b b a d c
c c d a b
d d c b a


Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?


Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B


Let A be Q\{1}. Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the existence of an identity, the existence of inverse properties for the operation * on A


Choose the correct alternative:

A binary operation on a set S is a function from


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = `"ab"/4` for a, b ∈ Q.


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a + ab ∀ a, b ∈ Q


The identity element for the binary operation * defined on Q ~ {0} as a * b = `"ab"/2` ∀ a, b ∈ Q ~ {0} is ______.


If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then"  3 "*" (1/5 "*" 1/2)` is equal to ____________.


Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is  ____________.


Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.


Which of the following is not a binary operation on the indicated set?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×