Advertisements
Advertisements
प्रश्न
Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.
उत्तर
We have a*b = a + b + ab for all a, b ∈ A, where A = R – { – 1}
Commutativity: For any a, b ∈ R – { – 1}
To prove: a*b = b*a
Now, a*b = a + b + ab .....(1)
b*a = b + a + ab .....(2)
From (1) and (2), we get
a*b = b*a
Hence, * is commutative.
Associative: For any a, b, c ∈ R – { – 1}
To prove: a*(b*c) = (a*b)*c
a*(b*c) = a*(b + c +bc)
= a + (b + c + bc) + a(b + c + bc)
= a + b + c + ab + ac + bc + abc .....(3)
(a*b)*c = (a + b + ab)*c
= a + b + ab + c + (a + b + ab)c
= a + b + c + ab + bc + ca + abc .....(4)
From (3) and (4), we have
a*(b*c) = (a*b)*c
Hence, a*b is associative.
Identity element:
Let e be the identity element. Then,
a*e = e*a = a
a*e = a + e + ae = a
e(1 + a) = 0
Therefore, e = 0 [∵ a ≠ – 1]
Hence, the identity element for* is e = 0.
Existence of inverse: Let a = R – { – 1} and b be the inverse of a.
Then, a * b = e = b * a
⇒a*b = e⇒a + b + ab = 0⇒b= `−a/(a+1)`
Since,
a∈R−(−1)
∴a≠−1
⇒a+1≠0
`⇒b=−a/(a+1)∈R`
Also, `−a/(a+1)` =−1⇒−a = −a−1⇒−1=0, which is not possible.
Hence, ` −a/(a+1)∈R−(−1)`
So, every element of R – { – 1} is invertible and the inverse of an element a is `−a/(a+1).`
APPEARS IN
संबंधित प्रश्न
LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)
Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.
For each binary operation * defined below, determine whether * is commutative or associative.
On Z, define a * b = a − b
Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find
(i) 5 * 7, 20 * 16
(ii) Is * commutative?
(iii) Is * associative?
(iv) Find the identity of * in N
(v) Which elements of N are invertible for the operation *?
Find which of the operations given above has identity.
State whether the following statements are true or false. Justify.
If * is a commutative binary operation on N, then a * (b * c) = (c * b) * a
Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by
a ×6 b = Remainder when ab is divided by 6.
Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?
Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.
Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Find the identity element in A ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the identity element in A ?
Define a binary operation on a set.
Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.
Define identity element for a binary operation defined on a set.
Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.
Let * be a binary operation defined by a * b = 3a + 4b − 2. Find 4 * 5.
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
On the power set P of a non-empty set A, we define an operation ∆ by
\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]
Then which are of the following statements is true about ∆.
If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ________________ .
On Z an operation * is defined by a * b = a2 + b2 for all a, b ∈ Z. The operation * on Z is _______________ .
A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .
Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .
Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A
Choose the correct alternative:
A binary operation on a set S is a function from
Choose the correct alternative:
Subtraction is not a binary operation in
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = `"ab"/4` for a, b ∈ Q.
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = ab2 for a, b ∈ Q
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a2 + b2 ∀ a, b ∈ Q
If * is a binary operation on the set of integers I defined by a * b = 3a + 4b - 2, then find the value of 4 * 5.