मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A - Mathematics

Advertisements
Advertisements

प्रश्न

Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A

बेरीज

उत्तर

Let a, b ∈ A

i.e. a ≠ ±1 , b ≠ 1

Now a * b = a + b – ab

If a + b – ab = 1

⇒ a + b – ab – 1 = 0

i.e. a(1 – b) – 1(1 – b) = 0

(a – 1)(1 – b) = 0 ⇒ a = 1, b = 1

But a ≠ 1 , b ≠ 1

So (a – 1)(1 – 6) ≠ 1

i.e. a * b ∈ A.

So * is a binary on A.

To verify the commutative property:

Let a, b ∈ A

i.e. a ≠ 1, b ≠ 1

Now a * b = a + b – ab

And b * a = b + a – ba

So a * b = b * a

⇒ * is commutative on A.

To verify the associative property:

Let a, b, c ∈ A

i.e. a, b, c ≠ 1

To prove the associative property we have to prove that

a * (b * c) = (a * b) * c

L.H.S: b * c = b + c – bc = D  .......(say)

So a * (b * c) = a * D = a + D – aD

= a + (b + c – bc) – a(b + c – bc)

= a + b + c – bc – ab – ac + abc

= a + b + c – ab – bc – ac + abc  .......(1)

R.H.S: (a * b) = a + b – ab = K ......(say)

So (a * b) * c = K * c = K + c – Kc

= (a + b – ab) + c – (a + b – ab)c

= a + b – ab + c – ac – bc + abc

= a + b + c – ab – bc – ac + abc ......(2)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Discrete Mathematics - Exercise 12.1 [पृष्ठ २३६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 12 Discrete Mathematics
Exercise 12.1 | Q 10. (i) | पृष्ठ २३६

संबंधित प्रश्‍न

Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.

(i) Compute (2 * 3) * 4 and 2 * (3 * 4)

(ii) Is * commutative?

(iii) Compute (2 * 3) * (4 * 5).

(Hint: use the following table)

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

Find which of the operations given above has identity.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

 On Z+, define * by a * b = a

Here, Z+ denotes the set of all non-negative integers.


Prove that the operation * on the set

\[M = \left\{ \begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}; a, b \in R - \left\{ 0 \right\} \right\}\] defined by A * B = AB is a binary operation.


Check the commutativity and associativity of the following binary operation  '*' on R defined by a * b = a + b − 7 for all ab ∈ R ?


Check the commutativity and associativity of the following binary operation  '*' on Z defined by a * b = a + b − ab for all a, b ∈ Z ?


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is a binary operation on S ?


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all ab ∈ R0.


Write the total number of binary operations on a set consisting of two elements.


Define identity element for a binary operation defined on a set.


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


On Z an operation * is defined by a * b = a2 + b2 for all a, b ∈ Z. The operation * on Z is _______________ .


For the multiplication of matrices as a binary operation on the set of all matrices of the form \[\begin{bmatrix}a & b \\ - b & a\end{bmatrix}\] a, b ∈ R the inverse of \[\begin{bmatrix}2 & 3 \\ - 3 & 2\end{bmatrix}\] is ___________________ .


Let * be an operation defined as *: R × R ⟶ R, a * b = 2a + b, a, b ∈ R. Check if * is a binary operation. If yes, find if it is associative too.


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C


Choose the correct alternative:

Subtraction is not a binary operation in


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a + ab ∀ a, b ∈ Q


The identity element for the binary operation * defined on Q ~ {0} as a * b = `"ab"/2` ∀ a, b ∈ Q ~ {0} is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×