English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A - Mathematics

Advertisements
Advertisements

Question

Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A

Sum

Solution

Let a, b ∈ A

i.e. a ≠ ±1 , b ≠ 1

Now a * b = a + b – ab

If a + b – ab = 1

⇒ a + b – ab – 1 = 0

i.e. a(1 – b) – 1(1 – b) = 0

(a – 1)(1 – b) = 0 ⇒ a = 1, b = 1

But a ≠ 1 , b ≠ 1

So (a – 1)(1 – 6) ≠ 1

i.e. a * b ∈ A.

So * is a binary on A.

To verify the commutative property:

Let a, b ∈ A

i.e. a ≠ 1, b ≠ 1

Now a * b = a + b – ab

And b * a = b + a – ba

So a * b = b * a

⇒ * is commutative on A.

To verify the associative property:

Let a, b, c ∈ A

i.e. a, b, c ≠ 1

To prove the associative property we have to prove that

a * (b * c) = (a * b) * c

L.H.S: b * c = b + c – bc = D  .......(say)

So a * (b * c) = a * D = a + D – aD

= a + (b + c – bc) – a(b + c – bc)

= a + b + c – bc – ab – ac + abc

= a + b + c – ab – bc – ac + abc  .......(1)

R.H.S: (a * b) = a + b – ab = K ......(say)

So (a * b) * c = K * c = K + c – Kc

= (a + b – ab) + c – (a + b – ab)c

= a + b – ab + c – ac – bc + abc

= a + b + c – ab – bc – ac + abc ......(2)

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Discrete Mathematics - Exercise 12.1 [Page 236]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 12 Discrete Mathematics
Exercise 12.1 | Q 10. (i) | Page 236

RELATED QUESTIONS

Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A

1) Find the identity element in A

2) Find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.


Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all ab ∈ Q ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (ab) ⊙ (cd) = (acbc + d) for all (ab), (cd) ∈ R0 × R :

Find the identity element in A ?

 


Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a  + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]

Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


Define an associative binary operation on a set.


Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.


Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .


If G is the set of all matrices of the form

\[\begin{bmatrix}x & x \\ x & x\end{bmatrix}, \text{where x } \in R - \left\{ 0 \right\}\] then the identity element with respect to the multiplication of matrices as binary operation, is ______________ .


Consider the binary operation * defined by the following tables on set S = {a, bcd}.

a b c  d
a a b c d
b b a d c
c c d a b
d d c b a


Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A ∧ B


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b for a, b ∈ Q


Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is  ____________.


The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×