English

Let a = Q X Q and Let * Be a Binary Operation on a Defined by (A, B) * (C, D) = (Ac, B + Ad) for (A, B), (C, D) ∈ A. Determine, Whether * is Commutative and Associative. Then, with Respect to * on - Mathematics

Advertisements
Advertisements

Question

Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A

1) Find the identity element in A

2) Find the invertible elements of A.

Solution 1

(a, b) * (c, d) = (ac, b + ad)

(c, d) * (a, b) = (ca, d + cf)

Not commutative

(a, b) * [(c, d) * (e, f)]

= (a, b) * [ce, d + cf]

= [ace, b + ad + acf]

Now,
[(a, b) * (c, d)] * (e, f)

= [ac, b + ad] * (e, f)

= [ace, b + ad + acf]

∴ Associative

∵ (a, b) * [(c, d) * (e, f)]= [(a, b)] * [(c, d) * (e, f)]

1) (a, b) * e = (a, b)

⇒ a = ac

⇒ c = 1 and b = b + ad ⇒ ad = 0

⇒ d = 0

∴ (a, b) * (1, 0) = (a, b + a × 0) = (a, b)

⇒ (1,0) is identify

2) (a, b) * (c, d) = e = (1, 0)

⇒ ac = 1 and b + ad = 0

⇒ `d = (-b)/a`

∴ Inverse of element

∴ Inverse of element of a, b is `(1/a, (-b)/a)`

shaalaa.com

Solution 2

Let A=Q×Q and * be a binary operation on A defined by (ab) * (cd) = (acb + ad) for (ab), (cd)A.

Commutativity:

Let X = (a, b) and Y = (c, d) ∈ A,∀ a, c ∈ Q and b, d ∈ Q. Then,

X * Y =(ac, b + ad)

Y * X=(ca, d + cb)

Therefore, X * Y ≠ Y * X ∀ X,Y∈A

Thus, * is not commutative on A.

Associativity:

Let X = (a, b), Y = (c, d) and Z=( e, f),∀ a, c, e ∈ Q and b, d, f ∈ Q

X*(Y*Z)=(a, b)*(ce, d+cf)

=(ace, b + ad + acf)

(X * Y)* Z=(ac, b + ad)*(e,f)

= (ace, b + ad + acf)

∴ X*(Y * Z) = (X * Y)*Z, ∀ X, Y, Z ∈ A

Thus,* is associative on A.

1)  Let (x, y) be the identity element in A with respect to *, ∈ Q and ∈ Q such that

X, ∈ A

⇒ X and X

(ax, ay)=(a, b) and (xa, xb(a, b)

Considering (ax, b+ay)=(a, b)

⇒ aa     

⇒ 1   and  ab

⇒ 0                 

Considering (xa, xb(a, b)

⇒ xa

⇒ and xb

0               [ x=1]

∴ (1, 0) is the identity element in A with respect to *.

Let F = (m, n) be the inverse in A∀ m ∈ Q and n ∈ Q

X * F = E and F * X = E

⇒(am, b + an) = (1, 0) and (ma, n + mb) = (1, 0)

Considering (am, b + an)=(1, 0)

⇒ am = 1

⇒m = 1/a and b + an = 0

`=> n = (-b)/a`

Considering (ma, n+mb)=(1, 0)

⇒ ma = 1

`=> m = 1/a and n + mb = 0`

`=> n = (-b)/a`   [∵ m = 1/a]

∴ The inverse of (a, b∈ A with respect to * is `(1/a, (-b)/a)`

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) All India Set 1

RELATED QUESTIONS

Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define = 2ab


Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.

(i) Compute (2 * 3) * 4 and 2 * (3 * 4)

(ii) Is * commutative?

(iii) Compute (2 * 3) * (4 * 5).

(Hint: use the following table)

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

Is * defined on the set {1, 2, 3, 4, 5} by = L.C.M. of and a binary operation? Justify your answer.


Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = a + b - 2 for all a, b ∈ N


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b

Here, Z+ denotes the set of all non-negative integers.


Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?


On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.


If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.


On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Find the invertible elements in A ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by   \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].

Show that 'o' is both commutative and associate ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Show that '*' is both commutative and associative on A ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the identity element in A ?


Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.


Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all ab ∈ R0.


Write the total number of binary operations on a set consisting of two elements.


Write the identity element for the binary operation * defined on the set R of all real numbers by the rule

\[a * b = \frac{3ab}{7} \text{ for all a, b} \in R .\] ?


Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all ab ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .


The number of binary operation that can be defined on a set of 2 elements is _________ .


Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M


If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then"  3 "*" (1/5 "*" 1/2)` is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×