Advertisements
Advertisements
Question
Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A
1) Find the identity element in A
2) Find the invertible elements of A.
Solution 1
(a, b) * (c, d) = (ac, b + ad)
(c, d) * (a, b) = (ca, d + cf)
Not commutative
(a, b) * [(c, d) * (e, f)]
= (a, b) * [ce, d + cf]
= [ace, b + ad + acf]
Now,
[(a, b) * (c, d)] * (e, f)
= [ac, b + ad] * (e, f)
= [ace, b + ad + acf]
∴ Associative
∵ (a, b) * [(c, d) * (e, f)]= [(a, b)] * [(c, d) * (e, f)]
1) (a, b) * e = (a, b)
⇒ a = ac
⇒ c = 1 and b = b + ad ⇒ ad = 0
⇒ d = 0
∴ (a, b) * (1, 0) = (a, b + a × 0) = (a, b)
⇒ (1,0) is identify
2) (a, b) * (c, d) = e = (1, 0)
⇒ ac = 1 and b + ad = 0
⇒ `d = (-b)/a`
∴ Inverse of element
∴ Inverse of element of a, b is `(1/a, (-b)/a)`
Solution 2
Let A=Q×Q and * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d)∈A.
Commutativity:
Let X = (a, b) and Y = (c, d) ∈ A,∀ a, c ∈ Q and b, d ∈ Q. Then,
X * Y =(ac, b + ad)
Y * X=(ca, d + cb)
Therefore, X * Y ≠ Y * X ∀ X,Y∈A
Thus, * is not commutative on A.
Associativity:
Let X = (a, b), Y = (c, d) and Z=( e, f),∀ a, c, e ∈ Q and b, d, f ∈ Q
X*(Y*Z)=(a, b)*(ce, d+cf)
=(ace, b + ad + acf)
(X * Y)* Z=(ac, b + ad)*(e,f)
= (ace, b + ad + acf)
∴ X*(Y * Z) = (X * Y)*Z, ∀ X, Y, Z ∈ A
Thus,* is associative on A.
1) Let E = (x, y) be the identity element in A with respect to *,∀ x ∈ Q and y ∈ Q such that
X * E = X = E * X,∀ X ∈ A
⇒ X * E = X and E * X = X
⇒(ax, b + ay)=(a, b) and (xa, y + xb) = (a, b)
Considering (ax, b+ay)=(a, b)
⇒ ax = a
⇒ x = 1 and b + ay = b
⇒ y = 0
Considering (xa, y + xb) = (a, b)
⇒ xa = a
⇒ x = 1 and y + xb = b
⇒y = 0 [∵ x=1]
∴ (1, 0) is the identity element in A with respect to *.
Let F = (m, n) be the inverse in A∀ m ∈ Q and n ∈ Q
X * F = E and F * X = E
⇒(am, b + an) = (1, 0) and (ma, n + mb) = (1, 0)
Considering (am, b + an)=(1, 0)
⇒ am = 1
⇒m = 1/a and b + an = 0
`=> n = (-b)/a`
Considering (ma, n+mb)=(1, 0)
⇒ ma = 1
`=> m = 1/a and n + mb = 0`
`=> n = (-b)/a` [∵ m = 1/a]
∴ The inverse of (a, b) ∈ A with respect to * is `(1/a, (-b)/a)`
RELATED QUESTIONS
Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = 2ab
Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.
(i) Compute (2 * 3) * 4 and 2 * (3 * 4)
(ii) Is * commutative?
(iii) Compute (2 * 3) * (4 * 5).
(Hint: use the following table)
* | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 3 | 1 | 1 |
4 | 1 | 2 | 1 | 4 | 1 |
5 | 1 | 1 | 1 | 1 | 5 |
Is * defined on the set {1, 2, 3, 4, 5} by a * b = L.C.M. of a and b a binary operation? Justify your answer.
Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * b= a − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.
Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.
Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = a + b - 2 for all a, b ∈ N
Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by
a ×6 b = Remainder when ab is divided by 6.
Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b
Here, Z+ denotes the set of all non-negative integers.
Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.
Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?
Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?
On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.
If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.
On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Find the invertible elements in A ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].
Show that 'o' is both commutative and associate ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Show that '*' is both commutative and associative on A ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the identity element in A ?
Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.
Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all a, b ∈ R0.
Write the total number of binary operations on a set consisting of two elements.
Write the identity element for the binary operation * defined on the set R of all real numbers by the rule
\[a * b = \frac{3ab}{7} \text{ for all a, b} \in R .\] ?
Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all a, b ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .
The number of binary operation that can be defined on a set of 2 elements is _________ .
Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M
If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then" 3 "*" (1/5 "*" 1/2)` is equal to ____________.