हिंदी

Let a = Q X Q and Let * Be a Binary Operation on a Defined by (A, B) * (C, D) = (Ac, B + Ad) for (A, B), (C, D) ∈ A. Determine, Whether * is Commutative and Associative. Then, with Respect to * on - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A

1) Find the identity element in A

2) Find the invertible elements of A.

उत्तर १

(a, b) * (c, d) = (ac, b + ad)

(c, d) * (a, b) = (ca, d + cf)

Not commutative

(a, b) * [(c, d) * (e, f)]

= (a, b) * [ce, d + cf]

= [ace, b + ad + acf]

Now,
[(a, b) * (c, d)] * (e, f)

= [ac, b + ad] * (e, f)

= [ace, b + ad + acf]

∴ Associative

∵ (a, b) * [(c, d) * (e, f)]= [(a, b)] * [(c, d) * (e, f)]

1) (a, b) * e = (a, b)

⇒ a = ac

⇒ c = 1 and b = b + ad ⇒ ad = 0

⇒ d = 0

∴ (a, b) * (1, 0) = (a, b + a × 0) = (a, b)

⇒ (1,0) is identify

2) (a, b) * (c, d) = e = (1, 0)

⇒ ac = 1 and b + ad = 0

⇒ `d = (-b)/a`

∴ Inverse of element

∴ Inverse of element of a, b is `(1/a, (-b)/a)`

shaalaa.com

उत्तर २

Let A=Q×Q and * be a binary operation on A defined by (ab) * (cd) = (acb + ad) for (ab), (cd)A.

Commutativity:

Let X = (a, b) and Y = (c, d) ∈ A,∀ a, c ∈ Q and b, d ∈ Q. Then,

X * Y =(ac, b + ad)

Y * X=(ca, d + cb)

Therefore, X * Y ≠ Y * X ∀ X,Y∈A

Thus, * is not commutative on A.

Associativity:

Let X = (a, b), Y = (c, d) and Z=( e, f),∀ a, c, e ∈ Q and b, d, f ∈ Q

X*(Y*Z)=(a, b)*(ce, d+cf)

=(ace, b + ad + acf)

(X * Y)* Z=(ac, b + ad)*(e,f)

= (ace, b + ad + acf)

∴ X*(Y * Z) = (X * Y)*Z, ∀ X, Y, Z ∈ A

Thus,* is associative on A.

1)  Let (x, y) be the identity element in A with respect to *, ∈ Q and ∈ Q such that

X, ∈ A

⇒ X and X

(ax, ay)=(a, b) and (xa, xb(a, b)

Considering (ax, b+ay)=(a, b)

⇒ aa     

⇒ 1   and  ab

⇒ 0                 

Considering (xa, xb(a, b)

⇒ xa

⇒ and xb

0               [ x=1]

∴ (1, 0) is the identity element in A with respect to *.

Let F = (m, n) be the inverse in A∀ m ∈ Q and n ∈ Q

X * F = E and F * X = E

⇒(am, b + an) = (1, 0) and (ma, n + mb) = (1, 0)

Considering (am, b + an)=(1, 0)

⇒ am = 1

⇒m = 1/a and b + an = 0

`=> n = (-b)/a`

Considering (ma, n+mb)=(1, 0)

⇒ ma = 1

`=> m = 1/a and n + mb = 0`

`=> n = (-b)/a`   [∵ m = 1/a]

∴ The inverse of (a, b∈ A with respect to * is `(1/a, (-b)/a)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) All India Set 1

संबंधित प्रश्न

Determine whether or not of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.

On Z+, define ∗ by a ∗ b = a – b


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On R, define * by ab2


For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define a * b  = `(ab)/2`


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define ab


Is * defined on the set {1, 2, 3, 4, 5} by = L.C.M. of and a binary operation? Justify your answer.


Consider a binary operation * on defined as a3 + b3. Choose the correct answer.

(A) Is * both associative and commutative?

(B) Is * commutative but not associative?

(C) Is * associative but not commutative?

(D) Is * neither commutative nor associative?


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

On R, define * by a * b = a + 4b2

Here, Z+ denotes the set of all non-negative integers.


Determine which of the following binary operation is associative and which is commutative : * on N defined by a * b = 1 for all a, b ∈ N ?


Let A be any set containing more than one element. Let '*' be a binary operation on A defined by a * b = b for all a, b ∈ A Is '*' commutative or associative on A ?


Check the commutativity and associativity of the following binary operations '*'. on N defined by a * b = 2ab for all a, b ∈ N ?


Let S be the set of all real numbers except −1 and let '*' be an operation defined by a * b = a + b + ab for all ab ∈ S. Determine whether '*' is a binary operation on S. If yes, check its commutativity and associativity. Also, solve the equation (2 * x) * 3 = 7.


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by   \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].

Show that 'o' is both commutative and associate ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the identity element in A ?


Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.


On the set Z of all integers a binary operation * is defined by a * b = a + b + 2 for all ab ∈ Z. Write the inverse of 4.


Write the total number of binary operations on a set consisting of two elements.


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .


The number of binary operation that can be defined on a set of 2 elements is _________ .


Let A = ℝ × ℝ and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ ℝ × ℝ.
(i) Show that * is commutative on A.
(ii) Show that * is associative on A.
(iii) Find the identity element of * in A.


Consider the binary operation * defined by the following tables on set S = {a, bcd}.

a b c  d
a a b c d
b b a d c
c c d a b
d d c b a


Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`


Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Choose the correct alternative:

If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a2 + b2 ∀ a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a + ab ∀ a, b ∈ Q


A binary operation A × A → is said to be associative if:-


Determine which of the following binary operation on the Set N are associate and commutaive both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×