हिंदी

Let S Be the Set of All Real Numbers Except −1 and Let '*' Be an Operation Defined By A * B = A + B + Ab For All A, B ∈ S. Determine Whether '*' is a Binary Operation On S. - Mathematics

Advertisements
Advertisements

प्रश्न

Let S be the set of all real numbers except −1 and let '*' be an operation defined by a * b = a + b + ab for all ab ∈ S. Determine whether '*' is a binary operation on S. If yes, check its commutativity and associativity. Also, solve the equation (2 * x) * 3 = 7.

योग

उत्तर

Checking for binary operation:

\[\text{Let }a, b \in S . \text{Then}, \]

\[a, b \in \text{R and a} \neq - 1, b \neq - 1\]

\[a * b = a + b + ab\]

\[\text{We need to prove thata} + b + ab \in S . \left[ \text{For this we have to prove thata} + b + ab \in \text{ R and a } + b + ab \neq - 1 \right]\]

\[\text{Since a, b} \in R, a + b + ab \in R, \text{let us assume thata} + b + ab = - 1 . \]

\[a + b + ab + 1 = 0\]

\[a + ab + b + 1 = 0\]

\[a\left( 1 + b \right) + 1\left( 1 + b \right) = 0\]

\[\left( a + 1 \right)\left( b + 1 \right) = 0\]

\[a = - 1, b = - 1 \left[ \text{which is false} \right]\]

\[\text{Hence},a + b + ab \neq - 1\]

\[\text{Therefore},\]

\[a + b + ab \in S\]

Thus, * is a binary operation on S.

Commutativity:

\[\text{Let }a, b \in S . \text{Then}, \]

\[a * b = a + b + ab\]

        \[ = b + a + ba\]

        \[ = b * a \]

\[\text{Therefore},\]

\[a * b = b * a, \forall a, b \in S\]

Thus, * is commutative on N.

Associativity :

\[\text{Let a}, b, c \in S\]

\[a * \left( b * c \right) = a * \left( b + c + bc \right)\]

\[ = a + b + c + bc + a\left( b + c + bc \right)\]

\[ = a + b + c + bc + ab + ac + abc\]

\[\left( a * b \right) * c = \left( a + b + ab \right) * c\]

\[ = a + b + ab + c + \left( a + b + ab \right)c\]

\[ = a + b + ab + c + ac + bc + abc\]

\[\text{Therefore},\]

\[a * \left( b * c \right) = \left( a * b \right) * c, \forall a, b, c \in S\]

Thus, * is associative on S.

Now,

\[\text{Given}:\hspace{0.167em}\left( 2 * x \right) * 3 = 7\]

\[ \Rightarrow \left( 2 + x + 2x \right) * 3 = 7\]

\[ \Rightarrow \left( 2 + 3x \right) * 3 = 7\]

\[ \Rightarrow 2 + 3x + 3 + \left( 2 + 3x \right)3 = 7\]

\[ \Rightarrow 5 + 3x + 6 + 9x = 7\]

\[ \Rightarrow 12x + 11 = 7\]

\[ \Rightarrow 12x = - 4\]

\[ \Rightarrow x = \frac{- 4}{12}\]

\[ \Rightarrow x = \frac{- 1}{3}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Binary Operations - Exercise 3.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 3 Binary Operations
Exercise 3.2 | Q 8 | पृष्ठ १२

संबंधित प्रश्न

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define = 2ab


Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by = min {ab}. Write the operation table of the operation∨.


Let * be the binary operation on given by a * = L.C.M. of and b. Find

(i) 5 * 7, 20 * 16

(ii) Is * commutative?

(iii) Is * associative?

(iv) Find the identity of * in N

(v) Which elements of are invertible for the operation *?


Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B &mnForE; AB in P(X) is the power set of X. Show that is the identity element for this operation and is the only invertible element in P(X) with respect to the operation*.


Given a non-empty set X, let *: P(X) × P(X) → P(X) be defined as A * B = (A − B) ∪ (B −A), &mnForE; AB ∈ P(X). Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with A−1 = A. (Hint: (A − Φ) ∪ (Φ − A) = Aand (A − A) ∪ (A − A) = A * A = Φ).


If a * b denotes the larger of 'a' and 'b' and if a∘b = (a * b) + 3, then write the value of (5)∘(10), where * and ∘ are binary operations.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


Determine whether the following operation define a binary operation on the given set or not :

\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\] 
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]


Let * be a binary operation on the set I of integers, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


Let S = {abc}. Find the total number of binary operations on S.


Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?


 Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a − b for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?


Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the invertible element in A ?


Let A  \[=\] R  \[\times\] R and \[*\]  be a binary operation on defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.


Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.


Find the inverse of 5 under multiplication modulo 11 on Z11.


Write the multiplication table for the set of integers modulo 5.


On the set Z of all integers a binary operation * is defined by a * b = a + b + 2 for all ab ∈ Z. Write the inverse of 4.


Let * be a binary operation, on the set of all non-zero real numbers, given by \[a * b = \frac{ab}{5} \text { for all a, b } \in R - \left\{ 0 \right\}\]

Write the value of x given by 2 * (x * 5) = 10.


Let +6 (addition modulo 6) be a binary operation on S = {0, 1, 2, 3, 4, 5}. Write the value of \[2 +_6 4^{- 1} +_6 3^{- 1} .\]


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


On the power set P of a non-empty set A, we define an operation ∆ by

\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]

Then which are of the following statements is true about ∆.


If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .


Subtraction of integers is ___________________ .


Examine whether the operation *defined on R by a * b = ab + 1 is (i) a binary or not. (ii) if a binary operation, is it associative or not?


Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R


Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the closure, commutative and associate properties satisfied by * on Q.


Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B


Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M


Choose the correct alternative:

If a * b = `sqrt("a"^2 + "b"^2)` on the real numbers then * is


The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA  "a, b" in "Q" - {0}` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×