Advertisements
Advertisements
प्रश्न
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
विकल्प
(42 + 52) + 32
(4 + 5)2 + 32
412 + 32
(4 + 5 + 3)2
उत्तर
Given: a * b = a2 + b2
APPEARS IN
संबंधित प्रश्न
Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) = (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.
(iii)and hence write the inverse of elements (5, 3) and (1/2,4)
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On R, define * by a * b = ab2
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = 2ab
Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by a ∨b = min {a, b}. Write the operation table of the operation∨.
Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as
a * b =
Show that zero is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.
Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by
a ×6 b = Remainder when ab is divided by 6.
Determine whether the following operation define a binary operation on the given set or not :
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b
Here, Z+ denotes the set of all non-negative integers.
Prove that the operation * on the set
Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a − b for all a, b ∈ Z ?
Check the commutativity and associativity of the following binary operation '*' on Q defined by
On Q, the set of all rational numbers, * is defined by
On the set Q of all ration numbers if a binary operation * is defined by
Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Find the identity element in Q − {−1} ?
Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that every element of Q − {−1} is invertible. Also, find the inverse of an arbitrary element ?
Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?
Construct the composition table for ×4 on set S = {0, 1, 2, 3}.
Find the inverse of 5 under multiplication modulo 11 on Z11.
Write the multiplication table for the set of integers modulo 5.
Define identity element for a binary operation defined on a set.
Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.
On the power set P of a non-empty set A, we define an operation ∆ by
Then which are of the following statements is true about ∆.
On Z an operation * is defined by a * b = a2 + b2 for all a, b ∈ Z. The operation * on Z is _______________ .
A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .
For the multiplication of matrices as a binary operation on the set of all matrices of the form
Consider the binary operation * defined by the following tables on set S = {a, b, c, d}.
* | a | b | c | d |
a | a | b | c | d |
b | b | a | d | c |
c | c | d | a | b |
d | d | c | b | a |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
Determine whether * is a binary operation on the sets-given below.
a * b – a.|b| on R
Determine whether * is a binary operation on the sets-given below.
(a * b) =
Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 *
Let A = {a +
Let A =
Let A =
Choose the correct alternative:
Subtraction is not a binary operation in
Choose the correct alternative:
Which one of the following is a binary operation on N?
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a + ab ∀ a, b ∈ Q
The identity element for the binary operation * defined on Q ~ {0} as a * b =
Determine which of the following binary operation on the Set N are associate and commutaive both.