हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Let A = (101001011001), B = (010110101001), C = (110101101111) be any three boolean matrices of the same type. Find (A ∧ B) v C - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A ∧ B) v C

योग

उत्तर

Given boolean matrices

A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`

B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`

C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))`

(A ∧ B) v C = `((0, 0, 0, 0),(0, 0, 0, 0),(1, 0, 0,  1)) vv ((1, 1, 1, 1),(0, 1, 1, 0),(1, 1, 1, 1))`

= `((0 vv 1, 0 vv 1, 0 vv 0, 0 vv 1),(0 vv 0, 0 vv 1, 0 vv 1, 0 vv 0),(1 vv 1, 0 vv 1, 0 vv 1, 1 vv 1))`

= `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Discrete Mathematics - Exercise 12.1 [पृष्ठ २३६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 12 Discrete Mathematics
Exercise 12.1 | Q 8. (iv) | पृष्ठ २३६

संबंधित प्रश्न

Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.


LetA= R × R and * be a binary operation on A defined by (a, b) * (c, d) = (a+c, b+d)

Show that * is commutative and associative. Find the identity element for * on A. Also find the inverse of every element (a, b) ε A.


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define = 2ab


Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B &mnForE; AB in P(X) is the power set of X. Show that is the identity element for this operation and is the only invertible element in P(X) with respect to the operation*.


Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not : '×6' on S = {1, 2, 3, 4, 5} defined by

a ×6 b = Remainder when ab is divided by 6.


The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Z defined by a * b = a − b for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation  '*' on Z defined by a * b = a + b − ab for all a, b ∈ Z ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :

 Find the identity element in Q0.


Construct the composition table for ×6 on set S = {0, 1, 2, 3, 4, 5}.


Which of the following is true ?


Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .


Determine whether * is a binary operation on the sets-given below.

(a * b) = `"a"sqrt("b")` is binary on R


Choose the correct alternative:

In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?


Choose the correct alternative:

In the set Q define a ⨀ b = a + b + ab. For what value of y, 3 ⨀ (y ⨀ 5) = 7?


In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?


Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.


Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×