Advertisements
Advertisements
प्रश्न
Which of the following is true ?
विकल्प
* defined by \[a * b = \frac{a + b}{2}\] is a binary operation on Z .
* defined by \[a * b = \frac{a + b}{2}\] is a binary operation on Q .
all binary commutative operations are associative.
subtraction is a binary operation on N.
उत्तर
Let us check each option one by one.
* defined by \[a * b = \frac{a + b}{2}\] is a binary operation on Z .
\[\text{If }a = 1 \text{ and } b = 2, \]
\[a * b = \frac{a + b}{2}\]
\[ = \frac{1 + 2}{2}\]
\[ = \frac{3}{2} \not\in Z\]
Hence, it is false.
* defined by \[a * b = \frac{a + b}{2}\] is a binary operation on Q .
\[a * b = \frac{a + b}{2} \in Q, \forall a, b \in Q\]
\[\text { For example: Let a } = \frac{3}{2}, b = \frac{5}{6} \in Q\]
\[a * b = \frac{\frac{3}{2} + \frac{5}{6}}{2}\]
\[ = \frac{9 + 5}{12}\]
\[ = \frac{14}{12}\]
\[ = \frac{7}{6} \in Q\]
Hence, it is true.
all binary commutative operations are associative.
Commutativity :-
\[\text{ Let a, b } \in N . \text{ Then }, \]
\[a * b = 2^{ab} \]
\[ = 2^{ba} \]
\[ = b * a\]
\[\text{ Therefore },\]
\[a * b = b * a, \forall a, b \in N\]
Thus, * is commutative on N.
Associativity :-
\[\text{ Let a, b, c } \in N . \text{ Then }, \]
\[a * \left( b * c \right) = a * \left( 2^{bc} \right)\]
\[ = 2^{a^* 2^{bc}} \]
\[\left( a * b \right) * c = \left( 2^{ab} \right) * c\]
\[ = 2^{ab^* 2^c} \]
\[\text{ Therefore },\]
\[a * \left( b * c \right) \neq \left( a * b \right) * c\]
Thus, * is not associative on N.
Therefore, all binary commutative operations are not associative.
Hence, it is false.
subtraction is a binary operation on N.
Subtraction is not a binary operation on N because subtraction of any two natural numbers is not always a natural number.
For example : 2 and 4 are natural numbers.
2 − 4 = −2 which is not a natural number.
Hence, it is false.
APPEARS IN
संबंधित प्रश्न
Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = ab
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On R, define * by a * b = ab2
For each binary operation * defined below, determine whether * is commutative or associative.
On Q, define a * b = `(ab)/2`
Let A = N × N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d)
Show that * is commutative and associative. Find the identity element for * on A, if any.
State whether the following statements are true or false. Justify.
If * is a commutative binary operation on N, then a * (b * c) = (c * b) * a
Determine whether the following operation define a binary operation on the given set or not :
\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\]
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]
Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N
Determine whether the following operation define a binary operation on the given set or not :
\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b
Here, Z+ denotes the set of all non-negative integers.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+ define * by a * b = |a − b|
Here, Z+ denotes the set of all non-negative integers.
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On R, define * by a * b = a + 4b2
Here, Z+ denotes the set of all non-negative integers.
Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?
On Z, the set of all integers, a binary operation * is defined by a * b = a + 3b − 4. Prove that * is neither commutative nor associative on Z.
On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.
On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Find the identity element in A ?
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Find the invertible elements in A ?
Let * be the binary operation on N defined by a * b = HCF of a and b.
Does there exist identity for this binary operation one N ?
Construct the composition table for +5 on set S = {0, 1, 2, 3, 4}.
Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]
Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.
Write the total number of binary operations on a set consisting of two elements.
Write the identity element for the binary operation * defined on the set R of all real numbers by the rule
\[a * b = \frac{3ab}{7} \text{ for all a, b} \in R .\] ?
If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .
If a binary operation * is defined on the set Z of integers as a * b = 3a − b, then the value of (2 * 3) * 4 is ___________ .
If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .
On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .
Consider the binary operation * defined by the following tables on set S = {a, b, c, d}.
* | a | b | c | d |
a | a | b | c | d |
b | b | a | d | c |
c | c | d | a | b |
d | d | c | b | a |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:
* | a | b | c | d |
a | a | c | b | d |
b | d | a | b | c |
c | c | d | a | a |
d | d | b | a | c |
Is it commutative and associative?
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C
Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M
Let A be Q\{1} Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A
Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.
Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is ____________.
Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.
The identity element for the binary operation * defined on Q – {0} as a * b = `"ab"/2 AA "a, b" in "Q" - {0}` is ____________.
Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.