Advertisements
Advertisements
प्रश्न
Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .
विकल्प
1
`(a-1)/a`
`a/(a-1)`
0
उत्तर
0
Let e be the identity element in Q - {1} with respect to * such that
\[a * e = a = e * a, \forall a \in Q - \left\{ 1 \right\}\]
\[a * e = a \text{ and }e * a = a, \forall a \in Q - \left\{ 1 \right\}\]
\[a + e - ae = a \text{ and }e + a - ea = a, \forall a \in Q - \left\{ 1 \right\}\]
\[e\left( 1 - a \right) = 0, \forall a \in Q - \left\{ 1 \right\}\]
\[e = 0, \forall a \in Q - \left\{ 1 \right\} \left[ \because a\neq1 \right]\]
Thus, 0 is the identity element in Q \[-\] {1} with respect to *.
APPEARS IN
संबंधित प्रश्न
For each binary operation * defined below, determine whether * is commutative or associative.
On Z, define a * b = a − b
Find which of the operations given above has identity.
Consider the binary operations*: R ×R → and o: R × R → R defined as a * b = |a - b| and ao b = a, &mnForE;a, b ∈ R. Show that * is commutative but not associative, o is associative but not commutative. Further, show that &mnForE;a, b, c ∈ R, a*(b o c) = (a* b) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.
If a * b denotes the larger of 'a' and 'b' and if a∘b = (a * b) + 3, then write the value of (5)∘(10), where * and ∘ are binary operations.
Determine whether the following operation define a binary operation on the given set or not : '⊙' on N defined by a ⊙ b= ab + ba for all a, b ∈ N
Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On R, define * by a * b = a + 4b2
Here, Z+ denotes the set of all non-negative integers.
Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?
On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.
Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:
Prove that * is a binary operation on S ?
Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:
Prove that * is commutative as well as associative ?
On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Show that '⊙' is commutative and associative on A ?
On R − {1}, a binary operation * is defined by a * b = a + b − ab. Prove that * is commutative and associative. Find the identity element for * on R − {1}. Also, prove that every element of R − {1} is invertible.
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the invertible element in A ?
Construct the composition table for ×5 on Z5 = {0, 1, 2, 3, 4}.
Write the multiplication table for the set of integers modulo 5.
Define a binary operation on a set.
Define identity element for a binary operation defined on a set.
For the binary operation multiplication modulo 10 (×10) defined on the set S = {1, 3, 7, 9}, write the inverse of 3.
For the binary operation multiplication modulo 5 (×5) defined on the set S = {1, 2, 3, 4}. Write the value of \[\left( 3 \times_5 4^{- 1} \right)^{- 1}.\]
If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .
Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all a, b ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .
On Z an operation * is defined by a * b = a2 + b2 for all a, b ∈ Z. The operation * on Z is _______________ .
Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .
For the multiplication of matrices as a binary operation on the set of all matrices of the form \[\begin{bmatrix}a & b \\ - b & a\end{bmatrix}\] a, b ∈ R the inverse of \[\begin{bmatrix}2 & 3 \\ - 3 & 2\end{bmatrix}\] is ___________________ .
Let * be a binary operation defined on Q+ by the rule
\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .
Consider the binary operation * defined by the following tables on set S = {a, b, c, d}.
* | a | b | c | d |
a | a | b | c | d |
b | b | a | d | c |
c | c | d | a | b |
d | d | c | b | a |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
Determine whether * is a binary operation on the sets-given below.
a * b – a.|b| on R
Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C
Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.
Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.
Which of the following is not a binary operation on the indicated set?
A binary operation A × A → is said to be associative if:-
a * b = `((a + b))/2` ∀a, b ∈ N is
Subtraction and division are not binary operation on.