हिंदी

For the Binary Operation Multiplication Modulo 5 (×5) Defined on the Set S = {1, 2, 3, 4}. Write the Value of ( 3 × 5 4 − 1 ) − 1 . - Mathematics

Advertisements
Advertisements

प्रश्न

For the binary operation multiplication modulo 5 (×5) defined on the set S = {1, 2, 3, 4}. Write the value of \[\left( 3 \times_5 4^{- 1} \right)^{- 1}.\] 

उत्तर

Here, 

1 \[\times_5\] 1 = Remainder obtained by dividing 1 × 1 by 5
          = 1

3 \[\times_5\] 4 = Remainder obtained by dividing 3 \[\times\] 4 by 5
           = 2

4 \[\times_5\] 4 = Remainder obtained by dividing 4 \[\times\] 4 by 5
            = 1 

So, the composition table is as follows :

×5 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

We observe that the first row of the composition table coincides with the top-most row and the first column coincides with the left-most column.

These two intersect at 1.

\[\Rightarrow a \times_5 1 = 1 \times_5 a = a, \forall a \in S\]

Thus, 1 is the identity element.

\[\text{ Now },\]
\[ \left( 3 \times_5 4^{- 1} \right)^{- 1} \]
      \[ = \left( 3 \times_5 4 \right)^{- 1 } \left [ \because 4 \times_5 4 = 1 \right]\]
       \[ = 2^{- 1} \]
       \[ = 3 \left[ \because 2 \times_5 3 = 1 \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Binary Operations - Exercise 3.6 [पृष्ठ ३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 3 Binary Operations
Exercise 3.6 | Q 13 | पृष्ठ ३६

संबंधित प्रश्न

Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10


Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by = |− b|


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define ab


For each binary operation * defined below, determine whether * is commutative or associative.

On − {−1}, define `a*b = a/(b+1)`


Consider a binary operation * on defined as a3 + b3. Choose the correct answer.

(A) Is * both associative and commutative?

(B) Is * commutative but not associative?

(C) Is * associative but not commutative?

(D) Is * neither commutative nor associative?


Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B &mnForE; AB in P(X) is the power set of X. Show that is the identity element for this operation and is the only invertible element in P(X) with respect to the operation*.


Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
On Z+, defined * by a * b = a − b

Here, Z+ denotes the set of all non-negative integers.


The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.


Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all ab ∈ Q ?


 Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all ab ∈ Q ?


Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?


On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


On the set Z of integers, if the binary operation * is defined by a * b = a + b + 2, then find the identity element.


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Find the identity element in Q − {−1} ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the identity element in A ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the invertible element in A ?


Let A  \[=\] R  \[\times\] R and \[*\]  be a binary operation on defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.


Write the multiplication table for the set of integers modulo 5.


Write the identity element for the binary operation * on the set R0 of all non-zero real numbers by the rule \[a * b = \frac{ab}{2}\] for all ab ∈ R0.


Define a commutative binary operation on a set.


Define identity element for a binary operation defined on a set.


If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.


If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .


If a binary operation * is defined on the set Z of integers as a * b = 3a − b, then the value of (2 * 3) * 4 is ___________ .


The law a + b = b + a is called _________________ .


Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .


For the multiplication of matrices as a binary operation on the set of all matrices of the form \[\begin{bmatrix}a & b \\ - b & a\end{bmatrix}\] a, b ∈ R the inverse of \[\begin{bmatrix}2 & 3 \\ - 3 & 2\end{bmatrix}\] is ___________________ .


The number of binary operation that can be defined on a set of 2 elements is _________ .


If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *


Let * be defined on R by (a * b) = a + b + ab – 7. Is * binary on R? If so, find 3 * `((-7)/15)`


Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Choose the correct alternative:

Subtraction is not a binary operation in


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a2 + b2 ∀ a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = (a – b)2 ∀ a, b ∈ Q


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×