Advertisements
Advertisements
प्रश्न
Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all a, b ∈ Q ?
उत्तर
Commutativity :
\[\text{Let }a, b \in Q . \text{Then}, \]
\[a * b = a + ab\]
\[b * a = b + ba\]
\[ = b + ab\]
\[\text{Therefore},\]
\[a * b \neq b * a\]
Thus, * is not commutative on Q.
Associativity :
\[\text{Let }a, b, c \in Q . \text{Then}, \]
\[a * \left( b * c \right) = a * \left( b + bc \right)\]
\[ = a + a\left( b + bc \right)\]
\[ = a + ab + abc\]
\[\left( a * b \right) * c = \left( a + ab \right) * c\]
\[ = \left( a + ab \right) + \left( a + ab \right) c\]
\[ = a + ab + ac + abc\]
\[\text{Therefore},\]
\[a * \left( b * c \right) \neq \left( a * b \right) * c\]
Thus, * is not associative on Q.
APPEARS IN
संबंधित प्रश्न
Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On R, define * by a * b = ab2
Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
On Z+, define * by a * b = |a − b|
For each binary operation * defined below, determine whether * is commutative or associative.
On R − {−1}, define `a*b = a/(b+1)`
Let*′ be the binary operation on the set {1, 2, 3, 4, 5} defined by a *′ b = H.C.F. of a and b. Is the operation *′ same as the operation * defined in Exercise 4 above? Justify your answer.
Let * be the binary operation on N given by a * b = L.C.M. of a and b. Find
(i) 5 * 7, 20 * 16
(ii) Is * commutative?
(iii) Is * associative?
(iv) Find the identity of * in N
(v) Which elements of N are invertible for the operation *?
State whether the following statements are true or false. Justify.
For an arbitrary binary operation * on a set N, a * a = ∀ a a * N.
Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B &mnForE; A, B in P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation*.
Consider the binary operations*: R ×R → and o: R × R → R defined as a * b = |a - b| and ao b = a, &mnForE;a, b ∈ R. Show that * is commutative but not associative, o is associative but not commutative. Further, show that &mnForE;a, b, c ∈ R, a*(b o c) = (a* b) o (a * c). [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.
Number of binary operations on the set {a, b} are
(A) 10
(B) 16
(C) 20
(D) 8
Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A
1) Find the identity element in A
2) Find the invertible elements of A.
If a * b denotes the larger of 'a' and 'b' and if a∘b = (a * b) + 3, then write the value of (5)∘(10), where * and ∘ are binary operations.
Determine whether the following operation define a binary operation on the given set or not :
\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\]
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]
Let S = {a, b, c}. Find the total number of binary operations on S.
Determine which of the following binary operation is associative and which is commutative : * on N defined by a * b = 1 for all a, b ∈ N ?
Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?
On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.
On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.
Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the identity element in Z ?
Let * be a binary operation on Q0 (set of non-zero rational numbers) defined by \[a * b = \frac{ab}{5} \text{for all a, b} \in Q_0\]
Show that * is commutative as well as associative. Also, find its identity element if it exists.
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Find the identity element in A ?
Find the inverse of 5 under multiplication modulo 11 on Z11.
Let +6 (addition modulo 6) be a binary operation on S = {0, 1, 2, 3, 4, 5}. Write the value of \[2 +_6 4^{- 1} +_6 3^{- 1} .\]
If the binary operation * on the set Z of integers is defined by a * b = a + 3b2, find the value of 2 * 4.
The number of binary operation that can be defined on a set of 2 elements is _________ .
Let A = ℝ × ℝ and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ ℝ × ℝ.
(i) Show that * is commutative on A.
(ii) Show that * is associative on A.
(iii) Find the identity element of * in A.
If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *
Determine whether * is a binary operation on the sets-given below.
a * b = min (a, b) on A = {1, 2, 3, 4, 5}
Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a + ab ∀ a, b ∈ Q
Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is ____________.
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.
Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.
Which of the following is not a binary operation on the indicated set?
A binary operation A × A → is said to be associative if:-
Determine which of the following binary operation on the Set N are associate and commutaive both.