हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Determine whether * is a binary operation on the sets-given below. a * b = min (a, b) on A = {1, 2, 3, 4, 5} - Mathematics

Advertisements
Advertisements

प्रश्न

Determine whether * is a binary operation on the sets-given below.

a * b = min (a, b) on A = {1, 2, 3, 4, 5}

योग

उत्तर

Yes.

Reason: a, b ∈ R and minimum of (a, b) is either a or b but a, b ∈ R.

So, min (a, b) ∈ R.

(Le.) a * b ∈ R.

* is a binary operation on R.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Discrete Mathematics - Exercise 12.1 [पृष्ठ २३५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 12 Discrete Mathematics
Exercise 12.1 | Q 1. (ii) | पृष्ठ २३५

संबंधित प्रश्न

For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define a * b  = `(ab)/2`


State whether the following statements are true or false. Justify.

If * is a commutative binary operation on N, then * (c) = (b) * a


Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = a + b - 2 for all a, b ∈ N


Let S = {abc}. Find the total number of binary operations on S.


The binary operation * : R × R → R is defined as a * b = 2a + b. Find (2 * 3) * 4.


Let A be any set containing more than one element. Let '*' be a binary operation on A defined by a * b = b for all a, b ∈ A Is '*' commutative or associative on A ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all ab ∈ Q ?


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{ for all a, b } \in Q_0\] :

 Find the identity element in Q0.


Write the inverse of 5 under multiplication modulo 11 on the set {1, 2, ... ,10}.


Define identity element for a binary operation defined on a set.


Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.


If the binary operation * on Z is defined by a * b = a2 − b2 + ab + 4, then value of (2 * 3) * 4 is ____________ .


On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .


Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Choose the correct alternative:

Which one of the following is a binary operation on N?


Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×