हिंदी

Discuss the Commutativity and Associativity of Binary Operation '*' Defined on a = Q − {1} by the Rule A * B= A − B + Ab for All, A, B ∊ A. Also Find the Identity Element of * in a and Hence Find the Invertible Elements of A. - Mathematics

Advertisements
Advertisements

प्रश्न

Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.

उत्तर

Given, * is a binary operation on Q  {1} defined by a*a- ab

Commutativity:

For any a, b∈A, we have 

a * b = a − b + ab and b *a = b − a + ba

Since, a − b + ab ≠ b − a + ab

∴ a * b ≠ b * a

So, * is not commutative on A

Associativity:

Let a, b, c ∈ A
(a * b) *c = (a − b + ab) * c

⇒(a * b) * c = (a − b + ab) − c + (a − b + ab)c

⇒(a * b) * c = a − b + ab − c + ac − bc + abc

a * (b * c) = a * (b − c + bc)

⇒a * (b * c) = a − (b − c + bc) + a(b − c + bc)

⇒a * (b * c) = a − b + c − bc + ab − ac + abc

⇒ (a * b) * c ≠ a *(b * c)

So, * is not associative on A

Identity Element

Let e be the identity element in A, then

a * e = a = e * a          ∀a ∈ Q − {1}

⇒ a − e + ae = a

⇒(a − 1)e = 0

⇒e = 0 (As a ≠ 1)

So, 0 is the identity element in A.

Inverse of an Element

Let a be an arbitrary element of A and b be the inverse of a. Then,

a * b = e = b * a

⇒ a * b = e

⇒a − b + ab = 0   [∵ e = 0]

⇒a = b(1 − a)

`=>b= a/(1-a)`

Since, ∈ Q - 1

So, every element of A is invertible.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Delhi Set 1

संबंधित प्रश्न

Determine whether or not of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.

On Z+, define ∗ by a ∗ b = a – b


For each binary operation * defined below, determine whether * is commutative or associative.

On Z+, define ab


State whether the following statements are true or false. Justify.

For an arbitrary binary operation * on a set N= ∀  N.


Determine whether the following operation define a binary operation on the given set or not :

\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]


Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all ab ∈ Q ?


On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is a binary operation on S ?


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the identity element in A ?


Find the inverse of 5 under multiplication modulo 11 on Z11.


Write the multiplication table for the set of integers modulo 5.


If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .


Q+ denote the set of all positive rational numbers. If the binary operation a ⊙ on Q+ is defined as \[a \odot = \frac{ab}{2}\] ,then the inverse of 3 is __________ .


Let '*' be a binary operation on N defined by
a * b = 1.c.m. (a, b) for all a, b ∈ N
Find 2 * 4, 3 * 5, 1 * 6.


Consider the binary operation * defined by the following tables on set S = {a, bcd}.

a b c  d
a a b c d
b b a d c
c c d a b
d d c b a


Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


If * is defined on the set R of all real numbers by *: a*b = `sqrt(a^2 + b^2 ) `, find the identity elements, if it exists in R with respect to * .


On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?


Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C


Choose the correct alternative:

Subtraction is not a binary operation in


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = a – b for a, b ∈ Q


Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is  ____________.


Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.


The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.


Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.


The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.


Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×