Advertisements
Advertisements
प्रश्न
Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * b= a − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.
उत्तर
Given, * is a binary operation on Q − {1} defined by a*b = a- b + ab
Commutativity:
For any a, b∈A, we have
a * b = a − b + ab and b *a = b − a + ba
Since, a − b + ab ≠ b − a + ab
∴ a * b ≠ b * a
So, * is not commutative on A
Associativity:
Let a, b, c ∈ A
(a * b) *c = (a − b + ab) * c
⇒(a * b) * c = (a − b + ab) − c + (a − b + ab)c
⇒(a * b) * c = a − b + ab − c + ac − bc + abc
a * (b * c) = a * (b − c + bc)
⇒a * (b * c) = a − (b − c + bc) + a(b − c + bc)
⇒a * (b * c) = a − b + c − bc + ab − ac + abc
⇒ (a * b) * c ≠ a *(b * c)
So, * is not associative on A
Identity Element
Let e be the identity element in A, then
a * e = a = e * a ∀a ∈ Q − {1}
⇒ a − e + ae = a
⇒(a − 1)e = 0
⇒e = 0 (As a ≠ 1)
So, 0 is the identity element in A.
Inverse of an Element
Let a be an arbitrary element of A and b be the inverse of a. Then,
a * b = e = b * a
⇒ a * b = e
⇒a − b + ab = 0 [∵ e = 0]
⇒a = b(1 − a)
`=>b= a/(1-a)`
Since, b ∈ Q - 1
So, every element of A is invertible.
APPEARS IN
संबंधित प्रश्न
Determine whether or not of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.
On Z+, define ∗ by a ∗ b = a – b
For each binary operation * defined below, determine whether * is commutative or associative.
On Z+, define a * b = ab
State whether the following statements are true or false. Justify.
For an arbitrary binary operation * on a set N, a * a = ∀ a a * N.
Determine whether the following operation define a binary operation on the given set or not :
\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]
Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all a, b ∈ Q ?
On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.
Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:
Prove that * is a binary operation on S ?
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Show that '*' is both commutative and associative ?
Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by
(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A
Find the identity element in A ?
Find the inverse of 5 under multiplication modulo 11 on Z11.
Write the multiplication table for the set of integers modulo 5.
If a * b = a2 + b2, then the value of (4 * 5) * 3 is _____________ .
Q+ denote the set of all positive rational numbers. If the binary operation a ⊙ on Q+ is defined as \[a \odot = \frac{ab}{2}\] ,then the inverse of 3 is __________ .
Let '*' be a binary operation on N defined by
a * b = 1.c.m. (a, b) for all a, b ∈ N
Find 2 * 4, 3 * 5, 1 * 6.
Consider the binary operation * defined by the following tables on set S = {a, b, c, d}.
* | a | b | c | d |
a | a | b | c | d |
b | b | a | d | c |
c | c | d | a | b |
d | d | c | b | a |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
If * is defined on the set R of all real numbers by *: a*b = `sqrt(a^2 + b^2 ) `, find the identity elements, if it exists in R with respect to * .
On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?
Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C
Choose the correct alternative:
Subtraction is not a binary operation in
Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?
In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = a – b for a, b ∈ Q
Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is ____________.
Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.
The binary operation * defined on set R, given by a * b `= "a+b"/2` for all a, b ∈ R is ____________.
Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.
The binary operation * defined on N by a * b = a + b + ab for all a, b ∈ N is ____________.
Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.