Advertisements
Advertisements
Question
Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * b= a − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.
Solution
Given, * is a binary operation on Q − {1} defined by a*b = a- b + ab
Commutativity:
For any a, b∈A, we have
a * b = a − b + ab and b *a = b − a + ba
Since, a − b + ab ≠ b − a + ab
∴ a * b ≠ b * a
So, * is not commutative on A
Associativity:
Let a, b, c ∈ A
(a * b) *c = (a − b + ab) * c
⇒(a * b) * c = (a − b + ab) − c + (a − b + ab)c
⇒(a * b) * c = a − b + ab − c + ac − bc + abc
a * (b * c) = a * (b − c + bc)
⇒a * (b * c) = a − (b − c + bc) + a(b − c + bc)
⇒a * (b * c) = a − b + c − bc + ab − ac + abc
⇒ (a * b) * c ≠ a *(b * c)
So, * is not associative on A
Identity Element
Let e be the identity element in A, then
a * e = a = e * a ∀a ∈ Q − {1}
⇒ a − e + ae = a
⇒(a − 1)e = 0
⇒e = 0 (As a ≠ 1)
So, 0 is the identity element in A.
Inverse of an Element
Let a be an arbitrary element of A and b be the inverse of a. Then,
a * b = e = b * a
⇒ a * b = e
⇒a − b + ab = 0 [∵ e = 0]
⇒a = b(1 − a)
`=>b= a/(1-a)`
Since, b ∈ Q - 1
So, every element of A is invertible.
APPEARS IN
RELATED QUESTIONS
For each binary operation * defined below, determine whether * is commutative or associative.
On Z, define a * b = a − b
For each binary operation * defined below, determine whether * is commutative or associative.
On Q, define a * b = `(ab)/2`
Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by a ∨b = min {a, b}. Write the operation table of the operation∨.
Is * defined on the set {1, 2, 3, 4, 5} by a * b = L.C.M. of a and b a binary operation? Justify your answer.
Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?
Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation 'o' on Q defined by \[\text{a o b }= \frac{ab}{2}\] for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all a, b ∈ Q ?
Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:
Prove that * is commutative as well as associative ?
Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.
If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.
On R − {1}, a binary operation * is defined by a * b = a + b − ab. Prove that * is commutative and associative. Find the identity element for * on R − {1}. Also, prove that every element of R − {1} is invertible.
Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.
A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{ a^2 + b^2} \text{for all a, b } \in R .\]
Write the identity element for * on R.
Which of the following is true ?
Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .
On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .
The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .
If * is defined on the set R of all real numbers by *: a*b = `sqrt(a^2 + b^2 ) `, find the identity elements, if it exists in R with respect to * .
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C
Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M
Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.
If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then" 3 "*" (1/5 "*" 1/2)` is equal to ____________.
Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.
Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.
A binary operation A × A → is said to be associative if:-
Determine which of the following binary operation on the Set N are associate and commutaive both.