English

Discuss the Commutativity and Associativity of Binary Operation '*' Defined on a = Q − {1} by the Rule A * B= A − B + Ab for All, A, B ∊ A. Also Find the Identity Element of * in a and Hence Find the Invertible Elements of A. - Mathematics

Advertisements
Advertisements

Question

Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.

Solution

Given, * is a binary operation on Q  {1} defined by a*a- ab

Commutativity:

For any a, b∈A, we have 

a * b = a − b + ab and b *a = b − a + ba

Since, a − b + ab ≠ b − a + ab

∴ a * b ≠ b * a

So, * is not commutative on A

Associativity:

Let a, b, c ∈ A
(a * b) *c = (a − b + ab) * c

⇒(a * b) * c = (a − b + ab) − c + (a − b + ab)c

⇒(a * b) * c = a − b + ab − c + ac − bc + abc

a * (b * c) = a * (b − c + bc)

⇒a * (b * c) = a − (b − c + bc) + a(b − c + bc)

⇒a * (b * c) = a − b + c − bc + ab − ac + abc

⇒ (a * b) * c ≠ a *(b * c)

So, * is not associative on A

Identity Element

Let e be the identity element in A, then

a * e = a = e * a          ∀a ∈ Q − {1}

⇒ a − e + ae = a

⇒(a − 1)e = 0

⇒e = 0 (As a ≠ 1)

So, 0 is the identity element in A.

Inverse of an Element

Let a be an arbitrary element of A and b be the inverse of a. Then,

a * b = e = b * a

⇒ a * b = e

⇒a − b + ab = 0   [∵ e = 0]

⇒a = b(1 − a)

`=>b= a/(1-a)`

Since, ∈ Q - 1

So, every element of A is invertible.

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) Delhi Set 1

RELATED QUESTIONS

For each binary operation * defined below, determine whether * is commutative or associative.

On Z, define − b


For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define a * b  = `(ab)/2`


Consider the binary operation ∨ on the set {1, 2, 3, 4, 5} defined by = min {ab}. Write the operation table of the operation∨.


Is * defined on the set {1, 2, 3, 4, 5} by = L.C.M. of and a binary operation? Justify your answer.


Determine which of the following binary operations are associative and which are commutative : * on Q defined by \[a * b = \frac{a + b}{2} \text{ for all a, b } \in Q\] ?


Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation 'o' on Q defined by \[\text{a o b }= \frac{ab}{2}\] for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = (a − b)2 for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by \[a * b = \frac{ab}{4}\] for all ab ∈ Q ?


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is commutative as well as associative ?


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.


On R − {1}, a binary operation * is defined by a * b = a + b − ab. Prove that * is commutative and associative. Find the identity element for * on R − {1}. Also, prove that every element of R − {1} is invertible.


Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.


A binary operation * is defined on the set R of all real numbers by the rule \[a * b = \sqrt{  a^2 + b^2} \text{for all a, b } \in R .\]

Write the identity element for * on R.


Which of the following is true ?


Let * be a binary operation on Q+ defined by \[a * b = \frac{ab}{100} \text{ for all a, b } \in Q^+\] The inverse of 0.1 is _________________ .


On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .


The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .


If * is defined on the set R of all real numbers by *: a*b = `sqrt(a^2 + b^2 ) `, find the identity elements, if it exists in R with respect to * .


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A v B


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C


Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M


Let * be binary operation defined on R by a * b = 1 + ab, ∀ a, b ∈ R. Then the operation * is ______.


If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then"  3 "*" (1/5 "*" 1/2)` is equal to ____________.


Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.


Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.


A binary operation A × A → is said to be associative if:-


Determine which of the following binary operation on the Set N are associate and commutaive both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×