English

On the Set Q+ of All Positive Rational Numbers a Binary Operation * is Defined by a ∗ B = a B 2 for All, A, B ∈ Q + . the Inverse of 8 is - Mathematics

Advertisements
Advertisements

Question

On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .

Options

  • `1/8`

  • `1/2`

  • 2

  • 4

MCQ

Solution

`1/2`

Let e be the identity element in Q+ with respect to * such that

\[a * e = a = e * a, \forall a \in Q^+ \]
\[a * e = a \text{ and }e * a = a, \forall a \in Q^+ \]
\[\text{ Then}, \]
\[\frac{ae}{2} = a \text{ and }\frac{ea}{2} = a, \forall a \in Q^+ \]
\[e = 2, \forall a \in Q^+\]

Thus, 2 is the identity element in Q+ with respect to *

\[\text{ Let }b \in Q^+ \text{ be the inverse of 8 . Then },\]
\[8 * b = e = b * 8\]
\[8 * b = e \text { and }b * 8 = e\]
\[\frac{8b}{2} = 2 \text{ and }\frac{b\left( 8 \right)}{2}=2\left[ \because e = 2 \right]\]
\[b = \frac{1}{2}\]
\[\text{Thus },\frac{1}{2} \text{ is the inverse of 8 } . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Binary Operations - Exercise 3.7 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 3 Binary Operations
Exercise 3.7 | Q 26 | Page 38

RELATED QUESTIONS

Let * be a binary operation, on the set of all non-zero real numbers, given by `a** b = (ab)/5` for all a,b∈ R-{0} that 2*(x*5)=10


Show that the binary operation * on A = R – { – 1} defined as a*b = a + b + ab for all a, b ∈ A is commutative and associative on A. Also find the identity element of * in A and prove that every element of A is invertible.


Determine whether or not of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On Z+, define * by ab


Let*′ be the binary operation on the set {1, 2, 3, 4, 5} defined by *′ = H.C.F. of and b. Is the operation *′ same as the operation * defined in Exercise 4 above? Justify your answer.


Let * be the binary operation on given by a * = L.C.M. of and b. Find

(i) 5 * 7, 20 * 16

(ii) Is * commutative?

(iii) Is * associative?

(iv) Find the identity of * in N

(v) Which elements of are invertible for the operation *?


Find which of the operations given above has identity.


Let A = × and * be the binary operation on A defined by  (ab) * (cd) = (cd)

Show that * is commutative and associative. Find the identity element for * on A, if any.


State whether the following statements are true or false. Justify.

For an arbitrary binary operation * on a set N= ∀  N.


Given a non-empty set X, consider the binary operation *: P(X) × P(X) → P(X) given by A * B = A ∩ B &mnForE; AB in P(X) is the power set of X. Show that is the identity element for this operation and is the only invertible element in P(X) with respect to the operation*.


Number of binary operations on the set {ab} are

(A) 10

(B) 16

(C) 20

(D) 8


If a * b denotes the larger of 'a' and 'b' and if a∘b = (a * b) + 3, then write the value of (5)∘(10), where * and ∘ are binary operations.


Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.


Check the commutativity and associativity of the following binary operations '*'. on Q defined by a * b = a − b for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = ab2 for all ab ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on Q defined by a * b = a + ab for all ab ∈ Q ?


If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].


On Q, the set of all rational numbers a binary operation * is defined by \[a * b = \frac{a + b}{2}\] Show that * is not associative on Q.


Let S be the set of all rational numbers except 1 and * be defined on S by a * b = a + b \[-\] ab, for all a, b \[\in\] S:

Prove that * is commutative as well as associative ?


Let R0 denote the set of all non-zero real numbers and let A = R0 × R0. If '*' is a binary operation on A defined by

(a, b) * (c, d) = (ac, bd) for all (a, b), (c, d) ∈ A

Find the invertible element in A ?


Let A  \[=\] R  \[\times\] R and \[*\]  be a binary operation on defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.


Define identity element for a binary operation defined on a set.


Write the composition table for the binary operation multiplication modulo 10 (×10) on the set S = {2, 4, 6, 8}.


Write the composition table for the binary operation ×5 (multiplication modulo 5) on the set S = {0, 1, 2, 3, 4}.


Let * be a binary operation on set of integers I, defined by a * b = 2a + b − 3. Find the value of 3 * 4.


Let * be a binary operation on N defined by a * b = a + b + 10 for all ab ∈ N. The identity element for * in N is _____________ .


Consider the binary operation * defined on Q − {1} by the rule
a * b = a + b − ab for all a, b ∈ Q − {1}
The identity element in Q − {1} is _______________ .


Consider the binary operation * defined by the following tables on set S = {a, bcd}.

a b c  d
a a b c d
b b a d c
c c d a b
d d c b a


Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


If * is defined on the set R of all real numbers by *: a*b = `sqrt(a^2 + b^2 ) `, find the identity elements, if it exists in R with respect to * .


Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A ∧ B


Let M = `{{:((x, x),(x, x)) : x ∈ "R"- {0}:}}` and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the existence of identity, existence of inverse properties for the operation * on M


In the set N of natural numbers, define the binary operation * by m * n = g.c.d (m, n), m, n ∈ N. Is the operation * commutative and associative?


Let R be the set of real numbers and * be the binary operation defined on R as a * b = a + b – ab ∀ a, b ∈ R. Then, the identity element with respect to the binary operation * is ______.


Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is  ____________.


Let * be a binary operation on set Q of rational numbers defined as a * b `= "ab"/5`. Write the identity for * ____________.


Let * be the binary operation on N given by a * b = HCF (a, b) where, a, b ∈ N. Find the value of 22 * 4.


Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.


Determine which of the following binary operation on the Set N are associate and commutaive both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×