English

Let * Be a Binary Operation on Set of Integers I, Defined by a * B = 2a + B − 3. Find the Value of 3 * 4. - Mathematics

Advertisements
Advertisements

Question

Let * be a binary operation on set of integers I, defined by a * b = 2a + b − 3. Find the value of 3 * 4.

Sum

Solution

Given: a * b = 2a + b − 3
 Here,    
 3 * 4 = 2 (3) + 4 \[-\] 3
          = 6 + 4 \[-\] 3
          = 7

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Binary Operations - Exercise 3.6 [Page 36]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 3 Binary Operations
Exercise 3.6 | Q 20 | Page 36

RELATED QUESTIONS

Determine whether or not each of the definition of given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

On R, define * by ab2


For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define a * b  = `(ab)/2`


Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.

(i) Compute (2 * 3) * 4 and 2 * (3 * 4)

(ii) Is * commutative?

(iii) Compute (2 * 3) * (4 * 5).

(Hint: use the following table)

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

Given a non-empty set X, let *: P(X) × P(X) → P(X) be defined as A * B = (A − B) ∪ (B −A), &mnForE; AB ∈ P(X). Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with A−1 = A. (Hint: (A − Φ) ∪ (Φ − A) = Aand (A − A) ∪ (A − A) = A * A = Φ).


Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A

1) Find the identity element in A

2) Find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not : '*' on N defined by a * b = ab for all a, b ∈ N.


Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.


Prove that the operation * on the set

\[M = \left\{ \begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}; a, b \in R - \left\{ 0 \right\} \right\}\] defined by A * B = AB is a binary operation.


Let '*' be a binary operation on N defined by a * b = 1.c.m. (a, b) for all a, b ∈ N

Check the commutativity and associativity of '*' on N.


Check the commutativity and associativity of the following binary operation '*'. on Z defined by a * b = a + b + ab for all ab ∈ Z ?


Check the commutativity and associativity of the following binary operation 'o' on Q defined by \[\text{a o b }= \frac{ab}{2}\] for all a, b ∈ Q ?


Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?


On Z, the set of all integers, a binary operation * is defined by a * b = a + 3b − 4. Prove that * is neither commutative nor associative on Z.


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that '*' is both commutative and associative on Q − {−1}.


Let * be a binary operation on Q − {−1} defined by a * b = a + b + ab for all a, b ∈ Q − {−1} Show that every element of Q − {−1} is invertible. Also, find the inverse of an arbitrary element ?


Construct the composition table for ×4 on set S = {0, 1, 2, 3}.


Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a  + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]

Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


For the binary operation multiplication modulo 5 (×5) defined on the set S = {1, 2, 3, 4}. Write the value of \[\left( 3 \times_5 4^{- 1} \right)^{- 1}.\] 


Let * be a binary operation defined by a * b = 3a + 4b − 2. Find 4 * 5.


On the power set P of a non-empty set A, we define an operation ∆ by

\[X ∆ Y = \left( \overline{X} \cap Y \right) \cup \left( X \cap \overline{Y} \right)\]

Then which are of the following statements is true about ∆.


If a binary operation * is defined on the set Z of integers as a * b = 3a − b, then the value of (2 * 3) * 4 is ___________ .


If the binary operation ⊙ is defined on the set Q+ of all positive rational numbers by \[a \odot b = \frac{ab}{4} . \text{ Then }, 3 \odot \left( \frac{1}{5} \odot \frac{1}{2} \right)\] is equal to __________ .


Let * be a binary operation defined on set Q − {1} by the rule a * b = a + b − ab. Then, the identify element for * is ____________ .


The binary operation * defined on N by a * b = a + b + ab for all a, b N is ________________ .


Subtraction of integers is ___________________ .


On Z an operation * is defined by a * b = a2 + b2 for all a, b ∈ Z. The operation * on Z is _______________ .


For the binary operation * defined on R − {1} by the rule a * b = a + b + ab for all a, b ∈ R − {1}, the inverse of a is ________________ .


For the multiplication of matrices as a binary operation on the set of all matrices of the form \[\begin{bmatrix}a & b \\ - b & a\end{bmatrix}\] a, b ∈ R the inverse of \[\begin{bmatrix}2 & 3 \\ - 3 & 2\end{bmatrix}\] is ___________________ .


The number of commutative binary operations that can be defined on a set of 2 elements is ____________ .


Let * be an operation defined as *: R × R ⟶ R, a * b = 2a + b, a, b ∈ R. Check if * is a binary operation. If yes, find if it is associative too.


Determine whether * is a binary operation on the sets-given below.

a * b = min (a, b) on A = {1, 2, 3, 4, 5}


Let A = {a + `sqrt(5)`b : a, b ∈ Z}. Check whether the usual multiplication is a binary operation on A


Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Choose the correct alternative:

In the set R of real numbers ‘*’ is defined as follows. Which one of the following is not a binary operation on R?


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


Let * be a binary operation on the set of integers I, defined by a * b = a + b – 3, then find the value of 3 * 4.


Which of the following is not a binary operation on the indicated set?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×