English

On Z, the Set of All Integers, a Binary Operation * is Defined by a * B = a + 3b − 4. Prove that * is Neither Commutative Nor Associative on Z. - Mathematics

Advertisements
Advertisements

Question

On Z, the set of all integers, a binary operation * is defined by a * b = a + 3b − 4. Prove that * is neither commutative nor associative on Z.

Sum

Solution

Commutativity:

\[\text{Let a}, b \in Z . \text{Then}, \] 
\[a * b = a + 3b - 4\] 
\[b * a = b + 3a - 4\] 
\[a * b \neq b * a\] 
\[\text{Let }a = 1, b = 2\] 
\[1 * 2 = 1 + 6 - 4\] 
         \[ = 3\] 
\[2 * 1 = 2 + 3 - 4\] 
         \[ = 1\] 
\[\text{Therefore}, \exists \text{ a} = 1, b = 2 \in \text{Z such that a} * b \neq b * a\]

Thus, * is not commutative on Z.

Associativity:

\[\text{Let a}, b, c \in Z . \text{Then}, \] 
\[a * \left( b * c \right) = a * \left( b + 3c - 4 \right)\] 
              \[ = a + 3\left( b + 3c - 4 \right) - 4\] 
              \[ = a + 3b + 9c - 12 - 4\] 
              \[ = a + 3b + 9c - 16\] 
 \[\left( a * b \right) * c = \left( a + 3b - 4 \right) * c\] 
                 \[ = a + 3b - 4 + 3c - 4\] 
                 \[ = a + 3b + 3c - 8\] 
\[\text{Thus, a} * \left( b * c \right) \neq \left( a * b \right) * c\] 
\[\text{ If a } = 1, b = 2, c = 3\] 
\[1 * \left( 2 * 3 \right) = 1 * \left( 2 + 9 - 4 \right)\] \[ = 1 * 7 \] 
              \[ = 1 + 21 - 4\] 
              \[ = 18\] 
\[\left( 1 * 2 \right) * 3 = \left( 1 + 6 - 4 \right) * 3\] 
                  \[ = 3 * 3\] 
                   \[ = 3 + 9 - 4\] 
                   \[ = 8\] 
\[\text{Therefore}, \exists \text{ a} = 1, b = 2, c = 3 \in \text{Z such that a } * \left( b * c \right) \neq \left( a * b \right) * c\]

Thus, * is not associative on Z.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Binary Operations - Exercise 3.2 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 3 Binary Operations
Exercise 3.2 | Q 10 | Page 12

RELATED QUESTIONS

For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define ab + 1


For each binary operation * defined below, determine whether * is commutative or associative.

On Q, define a * b  = `(ab)/2`


Consider a binary operation * on the set {1, 2, 3, 4, 5} given by the following multiplication table.

(i) Compute (2 * 3) * 4 and 2 * (3 * 4)

(ii) Is * commutative?

(iii) Compute (2 * 3) * (4 * 5).

(Hint: use the following table)

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

Let * be a binary operation on the set of rational numbers as follows:

(i) − 

(ii) a2 + b2

(iii) ab 

(iv) = (− b)2

(v) a * b = ab/4

(vi) ab2

Find which of the binary operations are commutative and which are associative.


Find which of the operations given above has identity.


Determine whether the following operation define a binary operation on the given set or not : 'O' on Z defined by a O b = ab for all a, b ∈ Z.


Let S be the set of all rational numbers of the form \[\frac{m}{n}\] , where m ∈ Z and n = 1, 2, 3. Prove that * on S defined by a * b = ab is not a binary operation.


Prove that the operation * on the set

\[M = \left\{ \begin{bmatrix}a & 0 \\ 0 & b\end{bmatrix}; a, b \in R - \left\{ 0 \right\} \right\}\] defined by A * B = AB is a binary operation.


 Check the commutativity and associativity of the following binary operation'*' on Q defined by a * b = ab + 1 for all a, b ∈ Q ?


Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative ?


On the set Z of integers a binary operation * is defined by a * b = ab + 1 for all a , b ∈ Z. Prove that * is not associative on Z.


Let S be the set of all real numbers except −1 and let '*' be an operation defined by a * b = a + b + ab for all ab ∈ S. Determine whether '*' is a binary operation on S. If yes, check its commutativity and associativity. Also, solve the equation (2 * x) * 3 = 7.


On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?


The binary operation * is defined by \[a * b = \frac{ab}{7}\] on the set Q of all rational numbers. Show that * is associative.


Find the identity element in the set of all rational numbers except −1 with respect to *defined by a * b = a + b + ab.


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Show that '⊙' is commutative and associative on A ?


Define a binary operation * on the set {0, 1, 2, 3, 4, 5} as \[a * b = \begin{cases}a + b & ,\text{ if a  + b} < 6 \\ a + b - 6 & , \text{if a + b} \geq 6\end{cases}\]

Show that 0 is the identity for this operation and each element a ≠ 0 of the set is invertible with 6 − a being the inverse of a.


The binary operation * defined on N by a * b = a + b + ab for all a, b N is ________________ .


Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .


A binary operation * on Z defined by a * b = 3a + b for all a, b ∈ Z, is ________________ .


On the set Q+ of all positive rational numbers a binary operation * is defined by \[a * b = \frac{ab}{2} \text{ for all, a, b }\in Q^+\]. The inverse of 8 is _________ .


If * is defined on the set R of all real numbers by *: a*b = `sqrt(a^2 + b^2 ) `, find the identity elements, if it exists in R with respect to * .


If * is defined on the set R of all real number by *: a * b = `sqrt(a^2 + b^2)` find the identity element if exist in R with respect to *


Define an operation * on Q as follows: a * b = `(("a" + "b")/2)`; a, b ∈ Q. Examine the existence of identity and the existence of inverse for the operation * on Q.


Consider the binary operation * defined on the set A = {a, b, c, d} by the following table:

* a b c d
a a c b d
b d a b c
c c d a a
d d b a c

Is it commutative and associative?


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find A ∧ B


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A ∧ B) v C


Let A be Q\{1}. Define * on A by x * y = x + y – xy. Is * binary on A? If so, examine the existence of an identity, the existence of inverse properties for the operation * on A


Is the binary operation * defined on Z (set of integer) by m * n = m – n + mn ∀ m, n ∈ Z commutative?


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = ab2 for a, b ∈ Q


A binary operation on a set has always the identity element.


Let * be a binary operation on Q, defined by a * b `= (3"ab")/5` is  ____________.


Let A = N x N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Then * is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×