English

On Q, the Set of All Rational Numbers, * is Defined by a ∗ B = a − B 2 , Shown that * is No Associative ? - Mathematics

Advertisements
Advertisements

Question

On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?

Sum

Solution

\[\text{Let }a, b, c \in Q . \text{Then}, \] 
\[a * \left( b * c \right) = a * \left( \frac{b - c}{2} \right)\] 
                   \[ = \frac{a - \left( \frac{b - c}{2} \right)}{2}\] 
                   \[ = \frac{2a - b + c}{4}\] 
\[\left( a * b \right) * c = \left( \frac{a - b}{2} \right) * c\] 
 \[ = \frac{\left( \frac{a - b}{2} \right) - c}{2}\] 

\[ = \frac{a - b - 2c}{4}\] 
\[\text{Thus, a} * \left( b * c \right) \neq \left( a * b \right) * c\] 
\[\text{If a} = 1, b = 2, c = 3 \] 
\[1 * \left( 2 * 3 \right) = 1 * \left( \frac{2 - 3}{2} \right)\] 
                  \[ = 1 * \frac{- 1}{2}\] 
                 \[ = \frac{1 + \frac{1}{2}}{2}\]

                  \[ = \frac{3}{4}\] 
\[\left( 1 * 2 \right) * 3 = \left( \frac{1 - 2}{2} \right) * 3\] 
                  \[ = \frac{- 1}{2} * 3\] 
                 \[ = \frac{\frac{- 1}{2} - 3}{2}\] 
                 \[ = \frac{- 7}{4}\] 
\[\text{Therefore}, \exists \text{ a} = 1, b = 2, c = 3 \in \text{R such that a} * \left( b * c \right) \neq \left( a * b \right) * c\]

Thus, * is not associative on Q.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Binary Operations - Exercise 3.2 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 3 Binary Operations
Exercise 3.2 | Q 9 | Page 12

RELATED QUESTIONS

Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) =  (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.

(iii)and hence write the inverse of elements (5, 3) and (1/2,4)


For each binary operation * defined below, determine whether * is commutative or associative.

On Z, define − b


Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A

1) Find the identity element in A

2) Find the invertible elements of A.


Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * ba − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.


Determine whether the following operation define a binary operation on the given set or not :

\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\] 
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]


Determine whether the following operation define a binary operation on the given set or not :

\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]


Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.


Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?


Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?


If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].


On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.


Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.


If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.


Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :

Show that '⊙' is commutative and associative on A ?


Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (ab) ⊙ (cd) = (acbc + d) for all (ab), (cd) ∈ R0 × R :

Find the identity element in A ?

 


Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by   \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].

Show that 'o' is both commutative and associate ?


Let A  \[=\] R  \[\times\] R and \[*\]  be a binary operation on defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.


Consider the binary operation 'o' defined by the following tables on set S = {a, bcd}.

o  a b c d
a a a a a
b a b c d
c a c d b
d a d b c

Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.


Define an associative binary operation on a set.


Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all ab ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .


Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .


Subtraction of integers is ___________________ .


Let * be a binary operation defined on Q+ by the rule

\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .


Let A = ℝ × ℝ and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ ℝ × ℝ.
(i) Show that * is commutative on A.
(ii) Show that * is associative on A.
(iii) Find the identity element of * in A.


On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?


Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C


Choose the correct alternative:

A binary operation on a set S is a function from


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = `"ab"/4` for a, b ∈ Q.


Let * be a binary operation defined on Q. Find which of the following binary operations are associative

a * b = ab2 for a, b ∈ Q


Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a – b ∀ a, b ∈ Q


Let * be the binary operation defined on Q. Find which of the following binary operations are commutative

a * b = a2 + b2 ∀ a, b ∈ Q


A binary operation on a set has always the identity element.


If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then"  3 "*" (1/5 "*" 1/2)` is equal to ____________.


Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.


a * b = `((a + b))/2` ∀a, b ∈ N is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×