Advertisements
Advertisements
Question
On Q, the set of all rational numbers, * is defined by \[a * b = \frac{a - b}{2}\] , shown that * is no associative ?
Solution
\[\text{Let }a, b, c \in Q . \text{Then}, \]
\[a * \left( b * c \right) = a * \left( \frac{b - c}{2} \right)\]
\[ = \frac{a - \left( \frac{b - c}{2} \right)}{2}\]
\[ = \frac{2a - b + c}{4}\]
\[\left( a * b \right) * c = \left( \frac{a - b}{2} \right) * c\]
\[ = \frac{\left( \frac{a - b}{2} \right) - c}{2}\]
\[ = \frac{a - b - 2c}{4}\]
\[\text{Thus, a} * \left( b * c \right) \neq \left( a * b \right) * c\]
\[\text{If a} = 1, b = 2, c = 3 \]
\[1 * \left( 2 * 3 \right) = 1 * \left( \frac{2 - 3}{2} \right)\]
\[ = 1 * \frac{- 1}{2}\]
\[ = \frac{1 + \frac{1}{2}}{2}\]
\[ = \frac{3}{4}\]
\[\left( 1 * 2 \right) * 3 = \left( \frac{1 - 2}{2} \right) * 3\]
\[ = \frac{- 1}{2} * 3\]
\[ = \frac{\frac{- 1}{2} - 3}{2}\]
\[ = \frac{- 7}{4}\]
\[\text{Therefore}, \exists \text{ a} = 1, b = 2, c = 3 \in \text{R such that a} * \left( b * c \right) \neq \left( a * b \right) * c\]
Thus, * is not associative on Q.
APPEARS IN
RELATED QUESTIONS
Let A = Q ✕ Q, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) = (ac, b + ad), for all (a, b) (c, d) ∈ A.
Find
(i) the identity element in A
(ii) the invertible element of A.
(iii)and hence write the inverse of elements (5, 3) and (1/2,4)
For each binary operation * defined below, determine whether * is commutative or associative.
On Z, define a * b = a − b
Let A = Q x Q and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) ∈ A. Determine, whether * is commutative and associative. Then, with respect to * on A
1) Find the identity element in A
2) Find the invertible elements of A.
Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * b= a − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A.
Determine whether the following operation define a binary operation on the given set or not :
\[' +_6 ' \text{on S} = \left\{ 0, 1, 2, 3, 4, 5 \right\} \text{defined by}\]
\[a +_6 b = \begin{cases}a + b & ,\text{ if a} + b < 6 \\ a + b - 6 & , \text{if a} + b \geq 6\end{cases}\]
Determine whether the following operation define a binary operation on the given set or not :
\[' * ' \text{on Q defined by } a * b = \frac{a - 1}{b + 1} \text{for all a, b} \in Q .\]
Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.
Check the commutativity and associativity of the following binary operations '⊙' on Q defined by a ⊙ b = a2 + b2 for all a, b ∈ Q ?
Check the commutativity and associativity of the following binary operation '*' on N defined by a * b = gcd(a, b) for all a, b ∈ N ?
If the binary operation o is defined by aob = a + b − ab on the set Q − {−1} of all rational numbers other than 1, shown that o is commutative on Q − [1].
On the set Q of all ration numbers if a binary operation * is defined by \[a * b = \frac{ab}{5}\] , prove that * is associative on Q.
Find the identity element in the set I+ of all positive integers defined by a * b = a + b for all a, b ∈ I+.
If the binary operation * on the set Z is defined by a * b = a + b −5, the find the identity element with respect to *.
Let * be a binary operation on Z defined by
a * b = a + b − 4 for all a, b ∈ Z Find the invertible elements in Z ?
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Show that '⊙' is commutative and associative on A ?
Let A = R0 × R, where R0 denote the set of all non-zero real numbers. A binary operation '⊙' is defined on A as follows (a, b) ⊙ (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R0 × R :
Find the identity element in A ?
Let 'o' be a binary operation on the set Q0 of all non-zero rational numbers defined by \[a o b = \frac{ab}{2}, \text{for all a, b} \in Q_0\].
Show that 'o' is both commutative and associate ?
Let A \[=\] R \[\times\] R and \[*\] be a binary operation on A defined by \[(a, b) * (c, d) = (a + c, b + d) .\] . Show that \[*\] is commutative and associative. Find the binary element for \[*\] on A, if any.
Consider the binary operation 'o' defined by the following tables on set S = {a, b, c, d}.
o | a | b | c | d |
a | a | a | a | a |
b | a | b | c | d |
c | a | c | d | b |
d | a | d | b | c |
Show that the binary operation is commutative and associative. Write down the identities and list the inverse of elements.
Define an associative binary operation on a set.
Q+ is the set of all positive rational numbers with the binary operation * defined by \[a * b = \frac{ab}{2}\] for all a, b ∈ Q+. The inverse of an element a ∈ Q+ is ______________ .
Let * be a binary operation on R defined by a * b = ab + 1. Then, * is _________________ .
Subtraction of integers is ___________________ .
Let * be a binary operation defined on Q+ by the rule
\[a * b = \frac{ab}{3} \text{ for all a, b } \in Q^+\] The inverse of 4 * 6 is ___________ .
Let A = ℝ × ℝ and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ ℝ × ℝ.
(i) Show that * is commutative on A.
(ii) Show that * is associative on A.
(iii) Find the identity element of * in A.
On Z, define * by (m * n) = mn + nm : ∀m, n ∈ Z Is * binary on Z?
Let A = `((1, 0, 1, 0),(0, 1, 0, 1),(1, 0, 0, 1))`, B = `((0, 1, 0, 1),(1, 0, 1, 0),(1, 0, 0, 1))`, C = `((1, 1, 0, 1),(0, 1, 1, 0),(1, 1, 1, 1))` be any three boolean matrices of the same type. Find (A v B) ∧ C
Choose the correct alternative:
A binary operation on a set S is a function from
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = `"ab"/4` for a, b ∈ Q.
Let * be a binary operation defined on Q. Find which of the following binary operations are associative
a * b = ab2 for a, b ∈ Q
Let N be the set of natural numbers. Then, the binary operation * in N defined as a * b = a + b, ∀ a, b ∈ N has identity element.
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a – b ∀ a, b ∈ Q
Let * be the binary operation defined on Q. Find which of the following binary operations are commutative
a * b = a2 + b2 ∀ a, b ∈ Q
A binary operation on a set has always the identity element.
If the binary operation * is defined on the set Q + of all positive rational numbers by a * b = `" ab"/4. "Then" 3 "*" (1/5 "*" 1/2)` is equal to ____________.
Consider the binary operation * on Q defind by a * b = a + 12b + ab for a, b ∈ Q. Find 2 * `1/3`.
a * b = `((a + b))/2` ∀a, b ∈ N is